

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

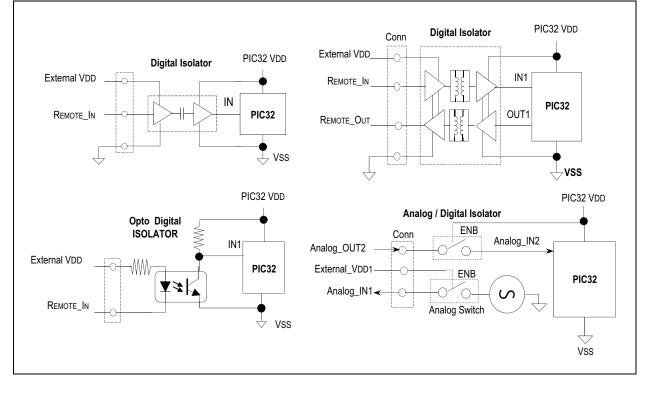
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f256ht-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Without proper signal isolation, on non-5V tolerant pins, the remote signal can power the PIC32 device through the high side ESD protection diodes. Besides violating the absolute maximum rating specification when VDD of the PIC32 device is restored and ramping up or ramping down, it can also negatively affect the internal Power-on Reset (POR) and Brown-out Reset (BOR) circuits, which can lead to improper initialization of internal PIC32 logic circuits. In these cases, it is recommended to implement digital or analog signal isolation as depicted in Figure 2-6, as appropriate. This is indicative of all industry microcontrollers and not just Microchip products.

TABLE 2-1: EXAMPLES OF DIGITAL/ ANALOG ISOLATORS WITH OPTIONAL LEVEL TRANSLATION

Example Digital/Analog Signal Isolation Circuits	Inductive Coupling	Capacitive Coupling	Opto Coupling	Analog/Digital Switch
ADuM7241 / 40 ARZ (1 Mbps)	Х		_	
ADuM7241 / 40 CRZ (25 Mbps)	Х			_
IS0721		Х		_
LTV-829S (2 Channel)	_		Х	_
LTV-849S (4 Channel)	_		Х	_
FSA266 / NC7WB66	_			Х

FIGURE 2-6: DIGITAL/ANALOG SIGNAL ISOLATION CIRCUITS

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Register Name	Function
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
HWREna	Enables access via the RDHWR instruction to selected hardware registers.
BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
Count ⁽¹⁾	Processor cycle count.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
Compare ⁽¹⁾	Timer interrupt control.
Status ⁽¹⁾	Processor status and control.
IntCtl ⁽¹⁾	Interrupt system status and control.
Cause ⁽¹⁾	Cause of last general exception.
EPC ⁽¹⁾	Program counter at last exception.
PRId	Processor identification and revision.
EBASE	Exception vector base register.
Config	Configuration register.
Config1	Configuration register 1.
Config2	Configuration register 2.
Config3	Configuration register 3.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
Debug ⁽²⁾	Debug control and exception status.
DEPC ⁽²⁾	Program counter at last debug exception.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
ErrorEPC ⁽¹⁾	Program counter at last error.
DESAVE ⁽²⁾	Debug handler scratchpad register.
	NameReservedHWREnaBadVAddr(1)Count(1)ReservedCompare(1)Status(1)IntCtl(1)Cause(1)EPC(1)PRIdEBASEConfigConfig1Config2Config3ReservedDebug(2)DEPC(2)ReservedErrorEPC(1)

TABLE 3-2. COPROCESSOR UREGISTERS	TABLE 3-2:	COPROCESSOR 0 REGISTERS
-----------------------------------	-------------------	--------------------------------

Note 1: Registers used in exception processing.

2: Registers used during debug.

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060	DCH0CON	31:16 15:0		—	—	_	—	—	—						—			-	00
		31:16											00						
3070	DCH0ECON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN			_	_	FF
		31:16	_	_	—	_	_	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
3080	DCH0INT	15:0	_	_	_	_	_	_			CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
3090	DCH0SSA	31:16 15:0								CHSSA	<31:0>				•				00
30A0	DCH0DSA	31:16 15:0								CHDSA	<31:0>								00
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	00
30B0	DCH0SSIZ	15:0								CHSSIZ	Z<15:0>								0.0
2000	DCH0DSIZ	31:16	_	—	_	—	_	_		_	_	_	_	_	_	_	—	_	00
5000	DCHUD3IZ	15:0								CHDSIZ	Z<15:0>								00
3000	DCH0SPTR	31:16	—	_		—	_	_	—	-	_	—			_	—	_		00
0000	Donioor III	15:0								CHSPTI	R<15:0>								00
30E0	DCH0DPTR	31:16	—	_	—	—	—	—	—		_	—		—	—	—	_	_	00
		15:0								CHDPTI	R<15:0>								00
30F0	DCH0CSIZ	31:16	—		—	—	—	—			-		—	—		—	_	_	00
		15:0					_			CHCSIZ	2<15:0>	_		_					00
3100	DCH0CPTR	31:16 15:0	—				_			CHCPTI					_	—	_		00
		31:16		_	_	_	_	_	_			_	_			_	_	_	00
3110	DCH0DAT	15:0	_	_	_	_	_	_	_	_					AT<7:0>				00
		31:16	_	_	_		_	_		_	_	—	—	_	_	_	_	_	00
3120	DCH1CON	15:0	CHBUSY	_	_	_	_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	<1:0>	00
0400	DOLUEDON	31:16	_	_	_	_	_	_	_	-				CHAIR	Q<7:0>				00
3130	DCH1ECON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF
3140	DCH1INT	31:16		_		_	_			_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
5140	DCHIINI	15:0	—		—	_	_	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
3150	DCH1SSA	31:16 15:0								CHSSA	<31:0>								00
3160	DCH1DSA	31:16 15:0								CHDSA	<31:0>								00

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

			-					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	_	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	_	_	_	_	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾ CHAED		CHCHN	CHAEN	—	CHEDET	CHPF	RI<1:0>

REGISTER 9-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 11-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0011 = REFCLKO 0100 = U5TX ⁽³⁾
RPD4	RPD4R	RPD4R<3:0>	0101 = Reserved
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = <u>SS1</u>
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved
RPF12 ⁽³⁾	RPF12R	RPF12R<3:0>	1010 = Reserved
RPD12 ⁽³⁾	RPD12R	RPD12R<3:0>	1011 = OC5 1100 = Reserved
RPF8 ⁽³⁾	RPF8R	RPF8R<3:0>	1101 = C1OUT
RPC3 ⁽³⁾	RPC3R	RPC3R<3:0>	1110 = SS3
RPE9 ⁽³⁾	RPE9R	RPE9R<3:0>	1111 = SS4 ⁽³⁾
RPD1	RPD1R	RPD1R<3:0>	0000 = No Connect
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS
RPB14	RPB14R	RPB14R<3:0>	0010 = Reserved 0011 = U1RTS
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(3)}$
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved
RPB6	RPB6R	RPB6R<3:0>	0110 = <u>SS2</u>
RPD5	RPD5R	RPD5R<3:0>	0111 = Reserved 1000 = SDO1
RPF3 ⁽¹⁾	RPF3R	RPF3R<3:0>	1000 = SDOT
RPF6 ⁽²⁾	RPF6R	RPF6R<3:0>	1010 = Reserved
RPF13 ⁽³⁾	RPF13R	RPF13R<3:0>	1011 = OC2
RPC2 ⁽³⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved
RPE8 ⁽³⁾	RPE8R	RPE8R<3:0>	1110 = Reserved
RPF2 ⁽¹⁾	RPF2R	RPF2R<3:0>	1111 = Reserved

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER (CONTINUED)('x' = 2 THROUGH 5)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽²⁾ 1 = Odd numbered and even numbered timers form a 32-bit timer 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	_	_	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	_	_	—	_	_	_	—		
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
15:8	0N ⁽¹⁾	_	SIDL	_	_	_	_	—		
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	OC32	OCFLT ⁽²⁾	OCTSEL	OCM<2:0>				

REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER ('x' = 1 THROUGH 5)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode

bit 12-6 Unimplemented: Read as '0'

- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 **OCTSEL:** Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

Control Registers 17.1

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP

ess		<i>a</i>								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL	—	—				SPIFE	ENHBUF	0000
5000	SITICON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5810	SPI1STAT	31:16	_	—	—			UFELM<4:	0>		—	—	—			BUFELM<4			0000
3010	011101/1	15:0		—	—	FRMERR	SPIBUSY		—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE		SPITBF	SPIRBF	19EB
5820	SPI1BUF	31:16 15:0		DATA<31:0>											0000				
5830	SPI1BRG	31:16	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
5630	SFIIDKG	15:0		-	_	_	—	_	-					BRG<8:0>					0000
		31:16		—	—		—				_	_	_				_	_	0000
5840	SPI1CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	-	AUDMO)D<1:0>	0000
5A00	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL	_	_				SPIFE	ENHBUF	0000
5A00	0112001	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5A10	SPI2STAT	31:16		—	—			UFELM<4:	0>		—	—	—		TX	BUFELM<4		-	0000
5410	01 120 17 11	15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EB
5A20	SPI2BUF	31:16 15:0								DATA<	31:0>								0000
5A30	SPI2BRG	31:16		—	—		—				_	—	_				_	_	0000
5A30		15:0	-	—	—	-	—	—	_					BRG<8:0>					0000
		31:16		—	—		—				_	_	_				_	_	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	-	AUDMO)D<1:0>	0000
5000	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	_				SPIFE	ENHBUF	0000
5C00	SPISCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5010	SPI3STAT	31:16		-	_		RXB	UFELM<4:	0>		—	_	—		TXI	BUFELM<4	:0>		0000
5C10	3F 133 IAI	15:0	-	—	—	FRMERR	SPIBUSY		-	SPITUR	SRMT	SPIROV	SPIRBE	-	SPITBE		SPITBF	SPIRBF	19EB
5C20	SPI3BUF	31:16 15:0								DATA<	31:0>								0000
		31:16	_	—	—	_	—	—	—	—	—	—	—	—	—	_	—	_	0000
5C30	SPI3BRG	15:0	_	_	—	_	_	_	_					BRG<8:0>					0000
Legen	d: x = un	known	value on F	Reset; — = ı	unimpleme	nted, read a	s '0'. Reset v	alues are s	shown in he	xadecimal.									•

All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Note 1: Registers" for more information.

2: This register is only available on 100-pin devices.

		PIxCON: SF				D:/	D **	D:"
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>
23:16	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23.10	MCLKSEL ⁽²⁾	_	_	—	_	—	SPIFE	ENHBUF ⁽²
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON ⁽¹⁾	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SSEN	CKP ⁽⁴⁾	MSTEN	DISSDI	STXISE	L<1:0>	SRXIS	EL<1:0>
Legend:								
R = Read	lable hit		W = Writable	a hit		mented bit, rea	ad as '0'	
-n = Valu			'1' = Bit is se		'0' = Bit is cle		x = Bit is un	known
	e al POR			÷l		areu	x = bit is un	IKHOWH
bit 31	0 = Framed S	SPI support is SPI support is	enabled (SS disabled	_	S FSYNC input			
bit 30	FRMSYNC: F 1 = Frame sy 0 = Frame sy	nc pulse inpu	it (Slave mod	e)	SSx pin bit (Fra	amed SPI mo	de only)	
bit 29	FRMPOL: Fra 1 = Frame pu 0 = Frame pu	ame Sync Po Ilse is active-	larity bit (Frar high		e only)			
bit 28	MSSEN: Mas 1 = Slave sele	ter Mode Sla ect SPI suppo ode. Polarity i	ve Select Ena ort enabled. T s determined	he <u>SS</u> pin is a by the FRMF	automatically o POL bit.	driven during t	transmission	in
bit 27	FRMSYPW: F	Frame Sync F	ulse Width b	it				
	0 = Frame sy			viac				
bit 26-24	FRMCNT<2:0 pulse. This bit 111 = Reserv 110 = Reserv 101 = Genera 010 = Genera 010 = Genera 010 = Genera 001 = Genera	t is only valid red; do not us red; do not us ate a frame sy ate a frame sy	in FRAMED_ e e ync pulse on e ync pulse on e ync pulse on e ync pulse on e ync pulse on e	SYNC mode every 32 data every 16 data every 8 data o every 4 data o every 2 data o	characters characters characters characters characters characters	nber of data c	characters tra	ansmitted pe
bit 23	MCLKSEL: M 1 = REFCLK 0 = PBCLK is	is used by the	e Baud Rate					
bit 22-18	Unimplemen	ted: Read as	'0'					
Note 1:	SYSCLK cyc	le immediatel	y following th	e instruction	e should not re that clears the			SFRs in the
2:	This bit can c	•						
3:	This bit is not mode (FRME		Framed SPI n	node. The use	er should prog	ram this bit to	0 '0' for the F	ramed SPI
4:	When AUDE	N = 1, the SP	I module fund	tions as if the	e CKP bit is eq	ual to '1', rega	ardless of the	actual value

of CKP.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	-	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	-	—		_	—
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/clear	ed
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision

- Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
- bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_		—	_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_		—	_	—	-
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 23-7: C1RXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVF<15:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 23-8: C1TMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
51.24	CANTS<15:8>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10				CANTS	i<7:0>					
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6				CANTSPR	E<15:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CANTSPF	RE<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (C1CON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks . . 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: C1TMR will be paused when CANCAP = 0.

2: The C1TMR prescaler count will be reset on any write to C1TMR (CANTSPRE will be unaffected).

24.1 Control Registers

TABLE 24-1: COMPARATOR REGISTER MAP

ess				Bits															
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CM1CON	31:16	_	_	—	—	—	_	—	—	_	—	—	—	_	—	—	_	0000
A000	CIVITCON	15:0	ON	COE	CPOL	—		_	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
4010	CM2CON	31:16	—	-	—	—		_	—	—	_	—	_	—	_	—	—	—	0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL	—		_	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
4020	CM3CON	31:16	—	-	—	—		_	—	—	_	—	_	—	_	—	—	—	0000
A020	CIVISCON	15:0	ON	COE	CPOL	—		_	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
A060	CMSTAT	31:16	—	-	—	—		_	—	—	_	—	_	—	_	—	—	—	0000
A000	CIVISTAT	15:0	—	_	SIDL	—	_			_	—		_	—	—	C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

		101 00. DE		100IIA IIOI					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0	
31:24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	—	—	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	_	_	_	-	_	-	_	
15:8	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
10.0				USERID<1	15:8>				
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
7:0	USERID<7:0>								

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bi	it
R = Readable bit	W = Writable bit	U = Unimplemented b	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

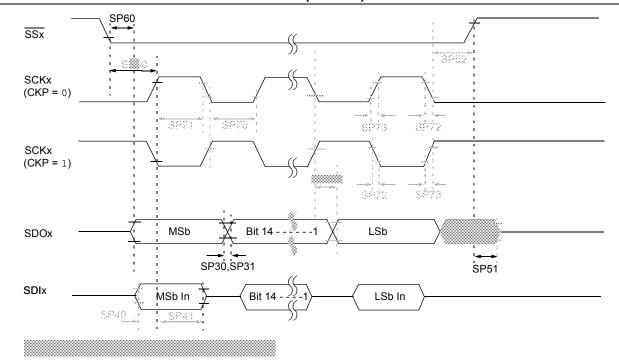

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions		
Operati	ng Voltag	e							
DC10	Vdd	Supply Voltage (Note 2)	2.3	_	3.6	V	—		
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	_	—	V	_		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	_	2.1	V	_		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	—	0.115	V/μs	_		

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

FIGURE 31-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	RACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time (Note 3)	Тѕск/2	_		ns	_		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—		
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—		
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31		
SP35	TscH2doV,			_	20	ns	VDD > 2.7V		
	TscL2DoV	SCKx Edge		_	30	ns	VDD < 2.7V		
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—		ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA	RACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics ⁽¹⁾	⁽¹⁾ Min. Typical ⁽²⁾ Max. Units Condition							
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5	_	25	ns	_			
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20	—	_	ns	_			
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	25	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

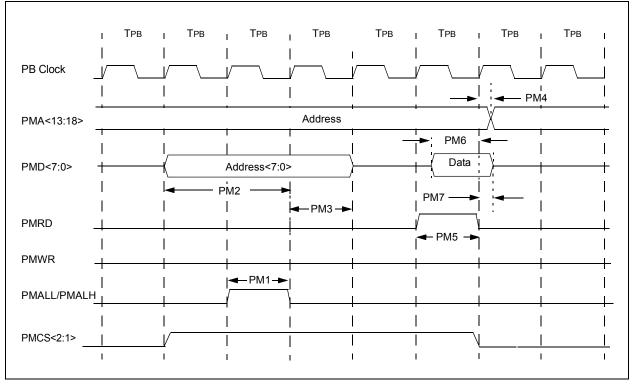

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_	
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	—	ns	_	
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	_	—	60	ns	_	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—	
PS6	Twr	WR Active Time	Трв + 25	_	_	ns	—	
PS7	Trd	RD Active Time	Трв + 25		_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions	
Idle Current (li	DLE): Core Of	f, Clock on I	Base Current	(Note 1)	
MDC34a	9.5	24	mA	50 MHz	

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- + CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param. No.	Typical ⁽²⁾	Max.	Units	ts Conditions		
Power-Do	own Curren	t (IPD) (Not	e 1)			
MDC40k	50	150	μA	-40°C	Base Power-Down Current	
MDC40n	250	650	μA	+85°C	Base Power-Down Current	
Module D	ifferential C	Current				
MDC41e	15	55	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)	
MDC42e	34	55	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)	
MDC43d	1100	1800	μA	3.6V	ADC: Aladc (Notes 3,4)	

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.