

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f256l-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

				`	,				
	Pin N	umber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description				
AN36	-	47	I	Analog					
AN37	_	48	I	Analog					
AN38	_	52	I	Analog					
AN39	_	53	I	Analog					
AN40	_	79	I	Analog					
AN41	_	80	I	Analog					
AN42	_	83	I	Analog	Analog input channels.				
AN43	_	84	I	Analog					
AN44	_	87	I	Analog					
AN45	_	88	I	Analog					
AN46	_	93	I	Analog					
AN47	_	94	I	Analog					
CLKI	39	63	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.				
CLKO	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.				
OSC1	39	63	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
SOSCI	47	73	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.				
SOSCO	48	74	0	—	32.768 kHz low-power oscillator crystal output.				
IC1	PPS	PPS	I	ST					
IC2	PPS	PPS	Ι	ST					
IC3	PPS	PPS	I	ST	Capture Input 1-5				
IC4	PPS	PPS	I	ST					
IC5	PPS	PPS	I	ST					
OC1	PPS	PPS	0	ST	Output Compare Output 1				
OC2	PPS	PPS	0	ST	Output Compare Output 2				
OC3	PPS	PPS	0	ST	Output Compare Output 3				
OC4	PPS	PPS	0	ST	Output Compare Output 4				
OC5	PPS	PPS	0	ST	Output Compare Output 5				
OCFA	PPS	PPS	I	ST	Output Compare Fault A Input				
OCFB	30	44	Ι	ST	Output Compare Fault B Input				
Legend:	CMOS = CN	IOS compat	ible inp	ut or output	Analog = Analog input I = Input O = Output				

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = P

P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 1-1:	PINOUT I/O DESCRIPTIONS ((CONTINUED)	

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	64-pin QFN/ 100-pin TQFP TQFP		Buffer Type	Description
RTCC	42	68	0	—	Real-Time Clock Alarm Output
CVREFOUT	23	34	0	Analog	Comparator Voltage Reference (Output)
C1INA	11	20	Ι	Analog	
C1INB	12	21	Ι	Analog	Comportor 1 Innuto
C1INC	5	11	I	Analog	
C1IND	4	10	I	Analog	
C2INA	13	22	I	Analog	
C2INB	14	23	I	Analog	Comportor 2 Innuito
C2INC	8	14	I	Analog	
C2IND	6	12	I	Analog	
C3INA	58	87	I	Analog	
C3INB	55	84	I	Analog	Comportor 2 Innuito
C3INC	54	83	I	Analog	
C3IND	51	78	I	Analog	
C10UT	PPS	PPS	0	_	Comparator 1 Output
C2OUT	PPS	PPS	0	_	Comparator 2 Output
C3OUT	PPS	PPS	0	_	Comparator 3 Output
PMALL	30	44	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte
PMALH	29	43	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte
PMA0	30	44	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	29	43	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
Legend:	CMOS = CN	IOS compati	ible inpu	ut or output	Analog = Analog input I = Input O = Output

Legend: CMOS = CMOS compatible input or output Analog = Analog input I = Input ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

TABLE 5-2: INTERRUPT REGISTER MAP (CONTINUED)

ess				Bits															
Virtual Addr (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1050	IDC5	31:16	_	—		A	01IP<2:0>		AD1IS	i<1:0>	_	—	_		OC5IP<2:0>	>	OC5IS	i<1:0>	0000
IUEU	IFC5	15:0	_	_	_	IC	5IP<2:0>		IC5IS	<1:0>	_	_			T5IP<2:0>		T5IS∙	<1:0>	0000
10E0	IPC6	31:16		_		CM	P1IP<2:0>		CMP1	S<1:0>	_	_			FCEIP<2:0>	•	FCEIS	<1:0>	0000
101.0	11 00	15:0		_		RT	CCIP<2:0>	•	RTCCI	S<1:0>	_	-			FSCMIP<2:0	>	FSCM	S<1:0>	0000
1100	IPC7	31:16	_	—	_	U	1IP<2:0>		U1IS	<1:0>	—	—	_		SPI1IP<2:0>	>	SPI1IS	S<1:0>	0000
1100	11 07	15:0	—	_	_	USI	3IP<2:0> ⁽²)	USBIS<	<1:0> ⁽²⁾	—	—	-		CMP2IP<2:0	>	CMP2I	S<1:0>	0000
1110	IPC8	31:16	-	—	-	SF	12IP<2:0>		SPI2IS	S<1:0>	—	—	-		PMPIP<2:0>	>	PMPIS	S<1:0>	0000
1110	11 00	15:0	—	—	—	С	NIP<2:0>		CNIS	<1:0>	—	—	_		I2C1IP<2:0>	`	12C115	5<1:0>	0000
1120	IPC9	31:16	-	—	-	U	4IP<2:0>		U4IS<1:0>		—	—	-	U3IP<2:0>		U3IS•	<1:0>	0000	
1120	11 00	15:0	—	—	—	120	C2IP<2:0>		12C2I5	S<1:0>	—	—	_	U2IP<2:0>			U2IS·	<1:0>	0000
1130	IPC10	31:16	—	—	—	DM	A1IP<2:0>		DMA1	S<1:0>	—	—	_		DMA0IP<2:0	>	DMA0I	S<1:0>	0000
1100	11 010	15:0	_	—	_	CTI	MUIP<2:0>	•	CTMUI	S<1:0>	—	—	_		U5IP<2:0>		U5IS•	<1:0>	0000
11/10		31:16	-	—	-	CAI	NIP<2:0>(5)	CANIS	<1:0> (5)	—	—	-		CMP3IP<2:0	>	CMP3I	S<1:0>	0000
11-0		15:0	-	—	-	DM	A3IP<2:0>	•	DMA3	S<1:0>	—	—	-		DMA2IP<2:0	>	DMA2I	S<1:0>	0000
1150	IPC12	31:16	—	—	_		_	—	—	_	_	—	_	_	—	—	—		0000
1130	11 012	15:0	_	_	_	SPI	4P<2:0>(1))	SPI4S<	:1:0>(1)	_	_	-		SPI3P<2:0>	•	SPI3S	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0
31.24	—	—	HVDR	—	—	—	—	—
22:16	U-0	U-0						
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
10.0	—	—	—	—	—	—	CMR	VREGS
7:0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7.0	EXTR	SWR		WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 7-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 **Unimplemented:** Read as '0'

bit 29	HVDR: High Voltage Detect Reset Flag bit
	1 = High Voltage Detect (HVD) Reset has occurred, voltage on VCAP > 2.5V
	0 = HVD Reset has not occurred
bit 28-10	Unimplemented: Read as '0'
bit 9	CMR: Configuration Mismatch Reset Flag bit

bit 0	
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	1 = Regulator is enabled and is on during Sleep mode
	0 = Regulator is disabled and is off during Sleep mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset as not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view next detection.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	-	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				CHCSIZ	<15:8>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				CHCSIZ	<u>/</u> <7:0>				

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	_	_		—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	_	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHCPTR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
1.0	CHCPTR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED)

bit 1 **PPBRST:** Ping-Pong Buffers Reset bit

- 1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
- 0 = Even/Odd buffer pointers not being Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry enabled
 - 0 = USB module and supporting circuitry disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token sent every 1 ms
- 0 = SOF token disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-2: 0	DUTPUT PIN SELECTION
---------------	----------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	10010 = U4RIS
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5 ⁽⁷⁾	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽³⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽³⁾	RPD14R	RPD14R<3:0>	$1100 = C1IX^{(3)}$
RPG1 ⁽³⁾	RPG1R	RPG1R<3:0>	1110 = SDO3
RPA14 ⁽³⁾	RPA14R	RPA14R<3:0>	1111 = SDO4 ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	10011 = U11X 0100 = U5PTS(3)
RPF0	RPF0R	RPF0R<3:0>	0101 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽⁴⁾	RPF3R	RPF3R<3:0>	1010 = Reserved
RPC4 ⁽³⁾	RPC4R	RPC4R<3:0>	1100 = Reserved
RPD15 ⁽³⁾	RPD15R	RPD15R<3:0>	1101 = C3OUT
RPG0 ⁽³⁾	RPG0R	RPG0R<3:0>	1110 = SDO3
RPA15 ⁽³⁾	RPA15R	RPA15R<3:0>	1111 = SDO4 ⁽³⁾

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER ('x' = 2 THROUGH 5)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_		_	_
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.0	ON ^(1,3)	—	SIDL ⁽⁴⁾	—	—	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	_	TCS ⁽³⁾	_

Legena:	l	_ec	jei	nd	:
---------	---	-----	-----	----	---

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode
- bit 12-8 Unimplemented: Read as '0'
- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

- bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾
 - 111 = 1:256 prescale value
 - 110 = 1:64 prescale value
 - 101 = 1:32 prescale value
 - 100 = 1:16 prescale value
 - 011 = 1:8 prescale value
 - 010 = 1:4 prescale value
 - 001 = 1:2 prescale value
 - 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

14.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Watchdog Timer (WDT), when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 14-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

18.1 Control Registers

TABLE 18-1: I2C1 AND I2C2 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	1201000	31:16	_	_	_	_	_	—	—	_		_	_	_	_		_	—	0000
5000	12CTCON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	BFFF
5010	12C1STAT	31:16	—	_	_	—	-	_	—	_		_	_	-		_	_	—	0000
3010	12010171	15:0	ACKSTAT	TRSTAT	—	—		BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5020		31:16	—	—	—	—		—		—	_	—	—	—	—	—	—	—	0000
								Address	Register					0000					
5030	I2C1MSK	31:16	—	—	—	—	—	—		—	—	—	—	—	—		—		0000
0000	120111010	15:0	—	—	—	—	—	—					Address Ma	ask Register					0000
5040	I2C1BRG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
		15:0	—	—	—	—					Βαι	id Rate Ger	nerator Reg	ister					0000
5050	I2C1TRN	31:16	_	_	_					_		—	—	—	_	—	—	—	0000
5060		15:0	_	_	_		_	_		_				Transmit	Register				0000
	I2C1RCV	31:16	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—		0000
		15:0	—	—	—	—	—	—	-	—				Receive	Register				0000
5100	I2C2CON	31:16	_	_		—	—	—	—	—	_	_	—	—	—	_	—		0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	BFFF
5110	I2C2STAT	31:16	-	-				-	—	-	—	—	_	_	_	_	-		0000
		15:0	ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10	IWCOL	12000	D_A	Р	S	R_W	RBF	IBF	0000
5120	I2C2ADD	31:16	_	_	_	_	_	_	-	—	-	—	-	—	-	—	—		0000
		15:0					_						Address	Register					0000
5130	I2C2MSK	31.10								_	_	_	Address M	-			_		0000
		15.0		_									Address Ma	ask Register					0000
5140	I2C2BRG	15.0					_		_	_					_	_	_		0000
		31.16	_								Dal		leialui Rey	ISIEI					0000
5150	I2C2TRN	15.0												Transmit	 Register		_		0000
		31.16																	0000
5160	I2C2RCV	15.0									1			- Receive	 Register		_		0000
L	I								0000										

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	—	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<1	5:14> ⁽¹⁾	PTEN<13:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			PTEN	<7:2>			PTEN<	<1:0> ⁽²⁾

REGISTER 20-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CH0NB	—		CH0SB<5:0>								
00.40	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	CH0NA	—	CH0SA<5:0>									
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	—	—	—	—	_				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0		_										

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

bit 23

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 CHONB: Negative Input Select bit for Sample B 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL bit 30 Unimplemented: Read as '0'

bit 29-24 CH0SB<5:0>: Positive Input Select bits for Sample B

For 64-pin devices:

011110 = Channel 0 positive input is Open⁽¹⁾ 011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 011100 = Channel 0 positive input is IVREF⁽³⁾ 011011 = Channel 0 positive input is AN27 000001 = Channel 0 positive input is AN1 000000 = Channel 0 positive input is AN0

For 100-pin devices:

110010 = Channel 0 positive input is $Open(1)$
110010 - Channel o positive input is Open ,
110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾
110000 = Channel 0 positive input is IVREF ⁽³⁾
101111 = Channel 0 positive input is AN47
•
•
•
0000001 = Channel 0 positive input is AN1
0000000 = Channel 0 positive input is AN0
CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
1 = Channel 0 negative input is AN1

- 0 = Channel 0 negative input is VREFL
- bit 22 Unimplemented: Read as '0'

Note 1: This selection is only used with CTMU capacitive and time measurement.

- 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
- 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
23.10	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	
15:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
10.0	TERRCNT<7:0>								
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7.0				RERRC	NT<7:0>				

REGISTER 23-5: C1TREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)

bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)

bit 17 **RXWARN:** Receiver in Error State Warning ($128 > RERRCNT \ge 96$)

bit 16 EWARN: Transmitter or Receiver is in Error State Warning

- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 23-6: C1FSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FIFOIP<15:0>: FIFOx Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
CTMU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Comparator 3	CMP3MD	PMD2<2>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
I2C1	I2C1MD	PMD5<16>
12C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
CAN	CAN1MD	PMD5<28>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

 Note 1:
 Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No. ⁽¹⁾	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
HV10	Vhvd	High Voltage Detect on VCAP pin	_	2.5	_	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 31-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standar (unless Operatir	d Operat otherwis	ing Cond se stated) ature -4 -4	$\begin{array}{l} \text{litions: 2.}\\ 0^{\circ}\text{C} \leq \text{TA}\\ 0^{\circ}\text{C} \leq \text{TA} \end{array}$	3V to 3.6V ≤ +85°C for Industrial ≤ +105°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width		1 Трв	_	_	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	_	_	_

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-40: OTG ELECTRICAL SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation	
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—	
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—	
USB318	VDIFS	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met	
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—	
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—	
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3	
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 k Ω load connected to ground	

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0488-0