

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f512h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:		ess the docume		
	browse	to the docume	ntation se	ction of
	the	Microchip	web	site
	(www.n	nicrochip.com).		

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- · Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001123)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
AN0	16	25	Ι	Analog	
AN1	15	24	Ι	Analog	
AN2	14	23	Ι	Analog	
AN3	13	22	Ι	Analog	
AN4	12	21	Ι	Analog	
AN5	11	20	I	Analog	
AN6	17	26	Ι	Analog	
AN7	18	27	I	Analog	
AN8	21	32	I	Analog	
AN9	22	33	Ι	Analog	
AN10	23	34	Ι	Analog	
AN11	24	35	I	Analog	
AN12	27	41	Ι	Analog	
AN13	28	42	Ι	Analog	
AN14	29	43	I	Analog	
AN15	30	44	Ι	Analog	
AN16	4	10	I	Analog	
AN17	5	11	I	Analog	
AN18	6	12	Ι	Analog	Analog input channels.
AN19	8	14	Ι	Analog	
AN20	62	98	I	Analog	
AN21	64	100	Ι	Analog	
AN22	1	3	I	Analog	
AN23	2	4	Ι	Analog	
AN24	49	76	Ι	Analog	
AN25	50	77	Ι	Analog	
AN26	51	78	I	Analog	
AN27	3	5	I	Analog	
AN28		1	Ι	Analog	
AN29	—	6	Ι	Analog	
AN30	_	7	I	Analog	
AN31		8	Ι	Analog	
AN32	_	18	I	Analog	
AN33	_	19	Ι	Analog	
AN34		39	Ι	Analog	
AN35		40		Analog	1

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

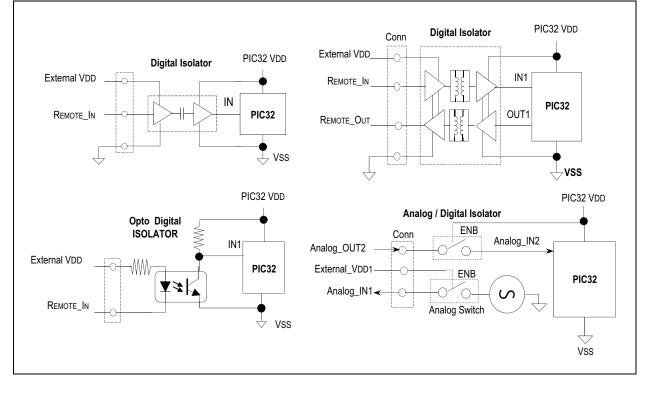
3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.


PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Without proper signal isolation, on non-5V tolerant pins, the remote signal can power the PIC32 device through the high side ESD protection diodes. Besides violating the absolute maximum rating specification when VDD of the PIC32 device is restored and ramping up or ramping down, it can also negatively affect the internal Power-on Reset (POR) and Brown-out Reset (BOR) circuits, which can lead to improper initialization of internal PIC32 logic circuits. In these cases, it is recommended to implement digital or analog signal isolation as depicted in Figure 2-6, as appropriate. This is indicative of all industry microcontrollers and not just Microchip products.

TABLE 2-1: EXAMPLES OF DIGITAL/ ANALOG ISOLATORS WITH OPTIONAL LEVEL TRANSLATION

Example Digital/Analog Signal Isolation Circuits	Inductive Coupling	Capacitive Coupling	Opto Coupling	Analog/Digital Switch
ADuM7241 / 40 ARZ (1 Mbps)	Х		_	
ADuM7241 / 40 CRZ (25 Mbps)	Х			_
IS0721		Х		_
LTV-829S (2 Channel)	_		Х	_
LTV-849S (4 Channel)	_		Х	_
FSA266 / NC7WB66	_			Х

FIGURE 2-6: DIGITAL/ANALOG SIGNAL ISOLATION CIRCUITS

4.3 Control Registers

Register 4-1 through Register 4-8 are used for setting the RAM and Flash memory partitions for data and code.

	ER 4-1: I		•••		RATION RE									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	—	-	—	—	—	_	—	_						
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
23:16	—	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1						
7:0	BMX WSDRM - - BMXARB<2:0>													
Legend: R = Reac -n = Value			W = Writable '1' = Bit is se		U = Unimplei '0' = Bit is cle	mented bit, re eared	ad as '0'							
bit 31-21	Unimpleme	nted: Read a	s '0'											
bit 20	BMXERRIXI: Enable Bus Error from IXI bit													
	1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus													
	0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus													
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit													
	1 = Enable bus error exceptions for unmapped address accesses initiated from ICD													
	0 = Disable bus error exceptions for unmapped address accesses initiated from ICD													
bit 18	BMXERRD	MA: Bus Error	from DMA bi	t										
	1 = Enable I	ous error exce	ptions for unr	mapped addre	ess accesses i	nitiated from I	DMA							
	0 = Disable	bus error exce	eptions for un	mapped addr	ess accesses	initiated from	DMA							
bit 17					disabled in De									
					ess accesses i		CPU data acc	ess						
					ess accesses									
bit 16					bit (disabled i									
					ess accesses i			on access						
					ess accesses									
bit 15-7		nted: Read a												
bit 6	-			Access from	Data RAM Wa	ait State bit								
	-				ate for address									
					ates for addre									
DIT 5-3	-													
	Unimplemented: Read as '0' BMXARB<2:0>: Bus Matrix Arbitration Mode bits													
					ill produce un	defined behav	vior)							
					ill produce und	defined behav	ior)							
bit 2-0					ill produce und	defined behav	ior)							
bit 5-3 bit 2-0	111 = Rese	rved (using th	ese configura	tion modes w										
	111 = Rese 011 = Rese	rved (using th rved (using th	ese configura	tion modes w	ill produce und ill produce und									
	111 = Rese	rved (using th rved (using th ation Mode 2	ese configura ese configura	tion modes w										
	111 = Rese 011 = Rese 010 = Arbitr 001 = Arbitr	rved (using th rved (using th	ese configura ese configura	tion modes w										

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0 U-0 U-0		U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	-	_	_	_	—
23:16	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	_	—	_	_	_	_	_	—
45.0	U-0	R-0	U-0	U-0	U-0 U-0		U-0	U-0
15:8	_	—	_	_	_	_	_	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_			TUN<	5:0> (1)		

Legend:	y = Value set from Configuration bits on POR							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess		Ô								Bi	ts								
Virtual Address (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3280	DCH2CPTR	31:16	—	_	_	_		-	—	_	-	-	—	_	—	-	—	—	0000
0200		15:0								CHCPTI	R<15:0>								0000
3290	DCH2DAT	31:16	3										—	0000					
5290	DCH2DAI	15:0	CHPDAT<7:0>											0000					
3240	DCH3CON	31:16											_	0000					
32AU	DCH3CON	15:0	CHBUSY	CHBUSY CHCHNS CHEN CHAED CHCHN CHAEN - CHEDET CHPRI<1:0>											<1:0>	0000			
32B0	DCH3ECON	31:16	—													00FF			
0200	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_			FFF8
32C0	DCH3INT	31:16	—	—	_	—	_	_	—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
0200	Donom	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
32D0	DCH3SSA	31:16		CHSSA<31:D>												0000			
		15:0 31:16																	0000
32E0	DCH3DSA	15:0								CHDSA	<31:0>								0000
2250	DCH3SSIZ	31:16	_	_	_		_	_	—	_	_	_	—		—	_	—	—	0000
32FU	DCH333IZ	15:0								CHSSIZ	Z<15:0>								0000
3300	DCH3DSIZ	31:16	_	_	_				—	-			_	_	_		—	_	0000
3300	DCI ISD3IZ	15:0								CHDSIZ	Z<15:0>								0000
3310	DCH3SPTR	31:16	—	_	—	_	-	-	—	_	_	-	—	_	—	-	—	—	0000
3310	Denisor IIX	15:0								CHSPT	R<15:0>		-					-	0000
3320	DCH3DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0020	DOI 10DI 111	15:0								CHDPTI	R<15:0>								0000
3330	DCH3CSIZ	31:16	_	_		_	—	_	—	—	_	—	_		—	—	—	—	0000
		15:0								CHCSIZ	Z<15:0>								0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0								CHCPTI	R<15:0>								0000
3350	DCH3DAT	31:16	—	—	—	—	_	_	—	—	—	—	—	_	—	—	—	—	0000
2000	_ 5.165.11	15:0		_		_		—	—					CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

ILCIOID L	. N 0 4. D	CINCCON. D						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	_	_	BITO
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	-	—	_	-	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_			PLEN<4:0>		
7.0	R/W-0 R/		R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	-	—	(CRCCH<2:0>	

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess											Bit	s							6
Virtual Address (BF88_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
5390	U1EP9	31:16	_	—		—	_	_	—	_		_	—	—	-	-	—		0000
5390	UIEF9	15:0				_	_	_	—	_	-		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	_		_			_		_		_	—	-		—		0000
53A0 U1EP10	UIEFIU	15:0	Ι	Ι		_	-	-	_	_			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
53BU	UIEPII	15:0	_	_	_		_	_	—	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
5500	UIEF12	15:0	Ι	—	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	Ι	—	—	_	—	—	_	—	—	_	_	—	—	—	—	—	0000
55D0	UIEF 13	15:0	Ι	—	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_			_	_	_	_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_			_	_		_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_			_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

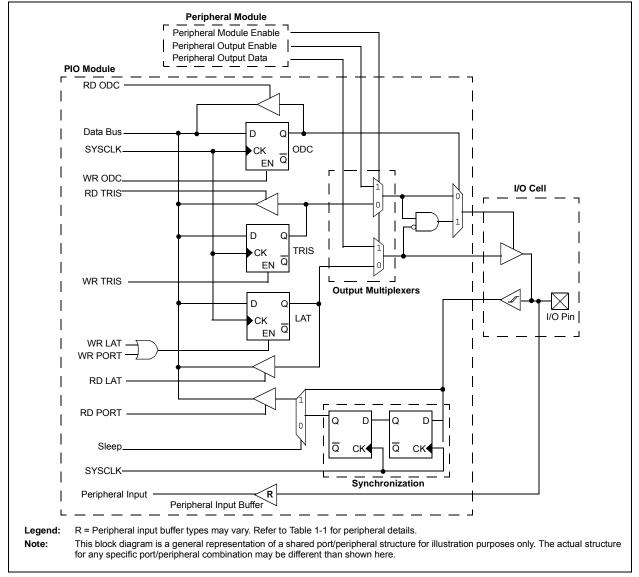
Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

11.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

The following are the key features of this module:

- · Individual output pin open-drain enable or disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt
 when change in pin state is detected
- Operation during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

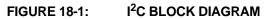
Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

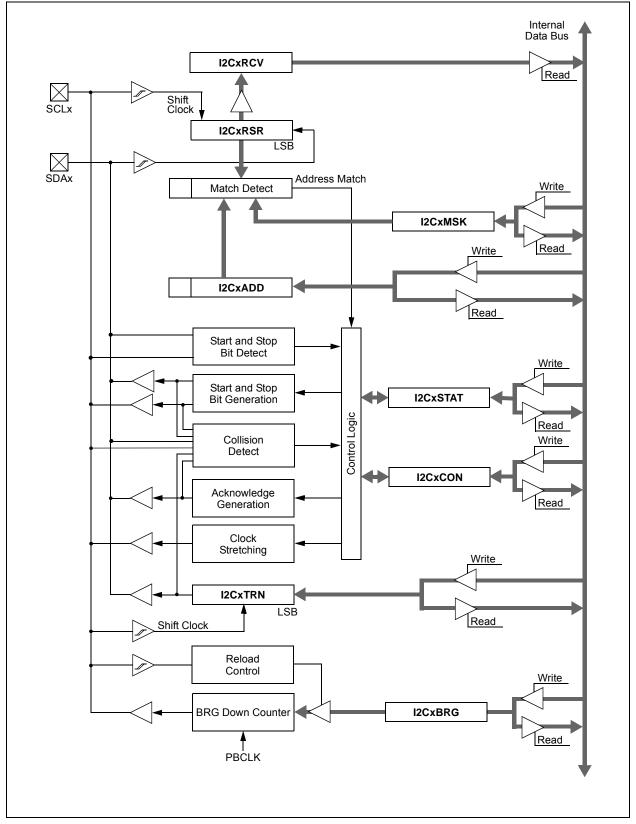
TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16		-	—	—	_	_	—	_		—	—			—			0000
0000	JUIGEEO	15:0	ANSELG15	_		—	—	—	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_		_	_		83C0
6610	TRISG	31:16	—	_	_	—	—	—	—	—	_	—	_	_	_	_	_	_	0000
0010	TRISO	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16		-	—	_	-	—	-			—	—	-	_	—	-	—	0000
0020	FURIG	15:0	RG15	RG14	RG13	RG12		_	RG9	RG8	RG7	RG6	_	_	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6620	LATG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	—	_	—	0000
6630	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
0040	ODCG	31:16	_	_		—	_	_	_	_	_	—	_	_	_	—	-	—	0000
6640	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
CCEO	CNPUG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	—	_	—	0000
6650	CNPUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
0000	CNPDG	31:16	_	_	_	_	_	_	_	_	_		_	_		_	_	_	0000
6660	CNPDG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
0070		31:16	_	_	_	_	_	_	_	_	_		_	_		_	_	_	0000
6670	CNCONG	15:0	ON	_	SIDL	_	_	_	_	_	_	—	_	_	_	—		_	0000
0000		31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	—		_	0000
6680	CNENG	15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
		31:16	_	_	—	_	_	_	_	_	-	—	_	_	—	—	_	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_		CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.


2: This bit is only available on devices without a USB module.


		PIxCON: SF				D !/	D:"	D:/
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0	>
23:16	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23.10	MCLKSEL ⁽²⁾	_	_	—	—	_	SPIFE	ENHBUF ⁽²
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON ⁽¹⁾	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SSEN	CKP ⁽⁴⁾	MSTEN	DISSDI	STXISE	L<1:0>	SRXIS	EL<1:0>
Legend:								
R = Read	lable hit		W = Writable	a hit	U = Unimpler	mented hit re	ad as 'O'	
-n = Valu			'1' = Bit is se		'0' = Bit is cle		x = Bit is un	known
-11 – valu			I - DILISSE	÷l		areu	X – DILIS UI	KIIOWII
bit 31	0 = Framed S	SPI support is SPI support is	enabled (SS disabled	_	SFSYNC input			
bit 30	FRMSYNC: F 1 = Frame sy 0 = Frame sy	nc pulse inpu	it (Slave mod	e)	SSx pin bit (Fra	amed SPI mo	de only)	
bit 29	FRMPOL: Fra 1 = Frame pu	ame Sync Po Ilse is active-	larity bit (Frar high		e only)			
bit 28	 0 = Frame pulse is active-low MSSEN: Master Mode Slave Select Enable bit 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit. 0 = Slave select SPI support is disabled. 							
bit 27	FRMSYPW: F	Frame Sync F	ulse Width b	it				
				viue				
bit 26-24	 1 = Frame sync pulse is one character wide 0 = Frame sync pulse is one clock wide 4 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in FRAMED_SYNC mode. 111 = Reserved; do not use 110 = Reserved; do not use 101 = Generate a frame sync pulse on every 32 data characters 100 = Generate a frame sync pulse on every 16 data characters 011 = Generate a frame sync pulse on every 8 data characters 010 = Generate a frame sync pulse on every 4 data characters 010 = Generate a frame sync pulse on every 2 data characters 000 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 2 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 001 = Generate a frame sync pulse on every 4 data characters 							
bit 23	MCLKSEL: Master Clock Enable bit ⁽²⁾ 1 = REFCLK is used by the Baud Rate Generator 0 = PBCLK is used by the Baud Rate Generator							
bit 22-18	Unimplemen	ted: Read as	'0'					
Note 1:	SYSCLK cyc	le immediatel	y following th	e instruction	should not reat that clears the			SFRs in the
2:	This bit can c	•						
3:	This bit is not mode (FRME		Framed SPI n	node. The us	er should prog	ram this bit to	0'0' for the F	ramed SPI
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.							

of CKP.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN15	MSEL15<1:0>		FSEL15<4:0>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN14	MSEL14<1:0>		FSEL14<4:0>					
15:8	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	FLTEN13 MSEL13<		3<1:0>	3<1:0> FSEL			.13<4:0>		
7:0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	FLTEN12	MSEL12<1:0>		FSEL12<4:0>					

REGISTER 23-13: C1FLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 bit 30-29	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	-	—	_	_	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	_	_	_	_	_	_	_
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	CVROE	CVRR	CVRSS	CVR<3:0>		<3:0>	

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled
 - Setting this bit does not affect other bits in the register.
 - 0 = Module is disabled and does not consume current
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 **CVRR:** CVREF Range Selection bit
 - 1 = 0 to 0.625 CVRSRC, with CVRSRC/24 step size
 - $_{\rm 0}$ = 0.25 CVRsRc to 0.719 CVRsRc, with CVRsRc/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS
- bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits
 - $\frac{\text{When CVRR = 1:}}{\text{CVREF = (CVR<3:0>/24) \bullet (CVRSRC)}}$ $\frac{\text{When CVRR = 0:}}{\text{CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)}}$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = External Clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

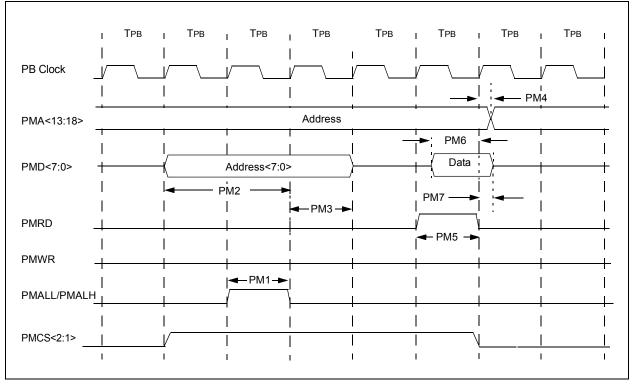

NOTES:

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_	
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	_	ns	_	
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	_	—	60	ns	_	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—	
PS6	Twr	WR Active Time	Трв + 25	_	_	ns	—	
PS7	Trd	RD Active Time	Трв + 25		_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

APPENDIX A: REVISION HISTORY

Revision A (July 2014)

This is the initial released version of the document.

Revision B (September 2014)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-1.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
1.0 "Device Overview"	Added the USBOEN pin to the Pinout I/O Descriptions (see Table 1-1).
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Updated the Primary Oscillator loading capacitor calculations (see 2.8.1 "Crystal Oscillator Design Consideration ").
	Added 2.11 "Considerations When Interfacing to Remotely Powered Circuits"
10.0 "USB On-The-Go (OTG)"	Updated the UOEMON bit definitions (see Register 10-20).
31.0 "40 MHz Electrical Characteristics"	Updated DC Characteristics I/O Pin Input Specification parameters DI30 and DI31 (see Table 31-8).

Revision C (November 2014)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-2.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description			
20.0 "Parallel Master Port (PMP)"	Added the RDSTART bit to the Parallel Port Control Register (see Table 20-1 and Register 20-1).			
31.0 "40 MHz Electrical	Updated the IDD Operating Current DC Characteristics (see Table 31-5).			
Characteristics"	Updated the IIDLE Idle Current DC Characteristics (see Table 31-6).			
	Updated the IPD Power Down Current DC Characteristics (see Table 31-7).			
	Updated the Internal FRC Accuracy (see Table 31-19).			
32.0 "50 MHz Electrical	Updated the IDD Operating Current DC Characteristics (see Table 32-2).			
Characteristics"	Updated the IIDLE Idle Current DC Characteristics (see Table 32-3).			
	Updated the IPD Power Down Current DC Characteristics (see Table 32-4).			