

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f512l-50i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 **Power Management**

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-1XX/2XX/5XX 64/100-pin family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾

- 1111 = Reserved; do not use
- 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	_		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	_	_	-	—
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	_	—				_
7.0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
7:0	ID	—	LSTATE	—	SESVD	SESEND		VBUSVD

REGISTER 10-3: U1OTGSTAT: USB OTG STATUS REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle
 - 0 = A Type-A cable has been plugged into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms
 - 0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms

bit 4 Unimplemented: Read as '0'

- bit 3 SESVD: Session Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A or B device
 - 0 = VBUS voltage is below Session Valid on the A or B device
- bit 2 **SESEND:** B-Device Session End Indicator bit
 - 1 = VBUS voltage is below Session Valid on the B device
 - 0 = VBUS voltage is above Session Valid on the B device

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVD: A-Device VBUS Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A device
 - 0 = VBUS voltage is below Session Valid on the A device

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—				—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		_				—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	-	-	—
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 10-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive enabled
 - 0 = Endpoint n receive disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit enabled
 - 0 = Endpoint n transmit disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake enabled
 - 0 = Endpoint Handshake disabled (typically used for isochronous endpoints)

TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		0								Bits	6								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	—	—	—	_	-	—	_	-		_	—	-	—	-	—	0000
0000	ANOLLO	15:0	ANSELG15	—	—		—		ANSELG9	ANSELG8	ANSELG7	ANSELG6	_	_		—	_	—	83C0
6610	TRISG	31:16	—	—	—	—	—	—	—	-	—	—	—	_	—	—	—	—	0000
0010	11400	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16	—	—	—	—	—	_	—	_	—	—	—	_	-	—	-	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	_	RG9	RG8	RG7	RG6	—	_	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	LATG15	LATG14	LATG13	LATG12	—	_	LATG9	LATG8	LATG7	LATG6	_	—	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	ODCG3	ODCG2	ODCG1	ODCG0	0000
6650	CNPUG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	—	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
6660	CNPDG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	—	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
6670	CNCONG	31:16	—	—	—		—		—	_	_	—	—	_		—	_	—	0000
		15:0	ON	—	SIDL		—		—	_	_	—	—	_		—	_	—	0000
6680	CNENG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	—	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	—	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
	0.107175	31:16	—	—	—		—		—	—	—	—	_	_	—	—	—	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	—	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

TABLE 11-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	—	—	_	—	_	—	_	—	—	_	—	—	_	_	_	0000
0000	ANGLEO	15:0	—	—	—		—	_	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_	—	_	—		03C0
6610	TRISG	31:16	—	—	—	—	—	_	—	-	—	—	—	—	—	—	—	_	0000
0010	11100	15:0	—	—	—	_	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	TRISG3	TRISG2	—	_	03CC
6620	PORTG	31:16	—	—	—	_	—	_	—	—	_	—	—	_	-	—	—	—	0000
0010		15:0	_	—	—	_	—	_	RG9	RG8	RG7	RG6	—	—	RG3 ⁽²⁾	RG2 ⁽²⁾	—	-	xxxx
6630	LATG	31:16	_	_	_	_	—	—	—		—	—	_	_	—		_		0000
		15:0	—	—	—	_	—	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	—		xxxx
6640	ODCG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000
		15:0	—	—	—	_	—	—	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	—		0000
6650	CNPUG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000
		15:0	—	—	—	_	—	—	CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	—	CNPUG3	CNPUG2	—		0000
6660	CNPDG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000
		15:0	—	—	—	_	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	—	CNPDG3	CNPDG2	—		0000
6670	CNCONG	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—		0000
		15:0	ON	—	SIDL	_	—	—	—	—	—	—	—	—	—	—	—		0000
6680	CNENG	31:16	_	—	—	_	—	_	—	-	—	—	—	—	—	—	—	-	0000
		15:0	_	_	_	_	—	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	—		0000
		31:16	_	—	—	_	—	_	—	—	—	—	_	_	—	—	—	_	0000
6690	CNSTATG	15:0	_	_	_	_	_		CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	_	-	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

Bits															(0				
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	—	—	_	—	—	—	—	_	—	_	_	_	—	—	—	_	0000
0000	WDICON	15:0	15:0 ON SWDTPS<4:0> WDTWINEN WDTCLR								0000								

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 **ENHBUF:** Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- bit 15 **ON:** SPI Peripheral On bit⁽¹⁾
 - 1 = SPI Peripheral is enabled
 - 0 = SPI Peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters in Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 **DISSDO:** Disable SDOx pin bit
 - 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
 - 0 = SDOx pin is controlled by the module
- bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits

When AUDEN = 1:

- MODE32 MODE16 Communication
 - 11 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 10 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 01 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
 - 00 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN = 0:

MODE32 MODE16 Communication

- 1x **32-bit**
- 01 **16-bit**
- 00 **8-bit**
- bit 9 SMP: SPI Data Input Sample Phase bit

Master mode (MSTEN = 1):

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time
- Slave mode (MSTEN = 0):
- SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
- bit 8 CKE: SPI Clock Edge Select bit⁽³⁾
 - 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
 - SSEN: Slave Select Enable (Slave mode) bit
 - 1 = SSx pin used for Slave mode
 - $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
- bit 6 **CKP:** Clock Polarity Select bit⁽⁴⁾

bit 7

- 1 = Idle state for clock is a high level; active state is a low level
- 0 = Idle state for clock is a low level; active state is a high level
- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
31:24	—	—	—	RXBUFELM<4:0>									
23:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
	—	—	—	TXBUFELM<4:0>									
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0					
15:8	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR					
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0					
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF					

Legend:	C = Clearable bit	HS = Set in hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	_	—
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—			FILHIT<4:0>		
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_			I	CODE<6:0>(1)		

REGISTER 23-4: C1VEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

```
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Reserved
         10000 = Reserved
         01111 = Filter 15
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
         ICODE<6:0>: Interrupt Flag Code bits<sup>(1)</sup>
bit 6-0
         1111111 = Reserved
         1001001 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
         1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0111111 = Reserved
         0010000 = Reserved
         0001111 = FIFO15 Interrupt (C1FSTAT<15> set)
         0000000 = FIFO0 Interrupt (C1FSTAT<0> set)
```


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN3	MSEL	3<1:0>	FSEL3<4:0>						
02:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	FLTEN2	MSEL	2<1:0>	FSEL2<4:0>						
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN1	MSEL	1<1:0>	FSEL1<4:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN0	MSEL	0<1:0>	FSEL0<4:0>						

REGISTER 23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 23-17: C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	_	—	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—	—	_	—	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

	•
bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full
bit 25	IXHALFIE: Iransmit FIFO Half Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	TXEN = 1: (FIFO configured as a transmit buffer)
	1 = FIFO is not full
	0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'
Note 1:	This bit is read-only and reflects the status of the FIFO.

27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- · Configuration bit select lock

27.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

27.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

TABLE 27-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		0		Bits									(1)						
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F040		31:16	_	_	_	—	_	_	_	_	_	—	_	_	_	_	_	_	0000
F240	FINDT	15:0	_	_	—	CVRMD	_	_	_	CTMUMD	-	-	_	_	_	_	_	AD1MD	0000
F050		31:16	_	_	—	—	_	_	—	—	—	—	_	_	_	_	_	_	0000
F250	FINDZ	15:0	_	—	_	—	_	_	_	—	—	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
F 260		31:16	_	_	_	_	_	_	_	—	-	-	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIND3	15:0	_	_	—	_	_	_	_	—	-	-	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	_	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	0000
F270		15:0	_	_	_	—	_	_	—	—	_	—	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	_	_	_	CAN1MD	_	_	—	USBMD ⁽¹⁾	_	—	_	—	_	_	I2C1MD	I2C1MD	0000
F20U	FINDS	15:0	_	_	_	_	SPI4MD	SPI3MD	SPI2MD	SPI1MD	-	-	_	U5MD	U4MD	U3MD	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	RTCCMD	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

© 2014-2016 Microchip Technology Inc.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P	
31.24	—	—	—	СР	—	—	—	BWP	
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P	
23:10		—	—	—	PWP<9:6>				
45.0	R/P	R/P	R/P	R/P	R/P	R/P	r-1	r-1	
15:8	PWP<5:0>							—	
7.0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P	
7:0		_	_	ICESE	L<1:0>	JTAGEN ⁽¹⁾	DEBUG<1:0>		

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 Reserved: Write '0'
- bit 30-29 Reserved: Write '1'
- bit 28 **CP:** Code-Protect bit
 - Prevents boot and program Flash memory from being read or modified by an external programming device.
 - 1 = Protection is disabled
 - 0 = Protection is enabled
- bit 27-25 Reserved: Write '1'
- bit 24 **BWP:** Boot Flash Write-Protect bit
 - Prevents boot Flash memory from being modified during code execution.
 - 1 = Boot Flash is writable
 - 0 = Boot Flash is not writable
- bit 23-20 Reserved: Write '1'
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

28.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX/5XX 64/100-pin devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX/5XX 64/100-pin family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 31.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

28.3.1 HIGH VOLTAGE DETECT (HVD)

The HVD module monitors the core voltage at the VCAP pin. If a voltage above the required level is detected on VCAP, the I/O pins are disabled and the device is held in Reset as long as the HVD condition persists. See parameter HV10 (VHVD) in Table 31-11 in **Section 31.1** "**DC Characteristics**" for more information.

28.3.2 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

28.3.3 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX/5XX 64/100-pin devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 31.1 "DC Characteristics"**.

FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

28.4 Programming and Diagnostics

PIC32MX1XX/2XX/5XX 64/100-pin devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- · Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules that provide a range of functions to the application developer.

BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	_	1 μs + 8 SYSCLK cycles	_	_	_
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS	—
SY30	TBOR	BOR Pulse Width (low)	_	1	_	μS	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.