

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f512l-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note 1: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). This document contains device-specific information for PIC32MX1XX/2XX/5XX 64/100-pin devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX1XX/2XX/ 5XX 64/100-pin family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX1XX/2XX/5XX 64/100-PIN BLOCK DIAGRAM

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)	

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
INT0	35 ⁽¹⁾ , 46 ⁽²⁾	55 ⁽¹⁾ , 72 ⁽²⁾	I	ST	External Interrupt 0
INT1	PPS	PPS	I	ST	External Interrupt 1
INT2	PPS	PPS	I	ST	External Interrupt 2
INT3	PPS	PPS	I	ST	External Interrupt 3
INT4	PPS	PPS	I	ST	External Interrupt 4
RA0	—	17	I/O	ST	
RA1	—	38	I/O	ST	
RA2	—	58	I/O	ST	
RA3	—	59	I/O	ST	
RA4	—	60	I/O	ST	
RA5	—	61	I/O	ST	DODTA is a hidiractional I/O part
RA6	—	91	I/O	ST	
RA7	—	92	I/O	ST	
RA9	_	28	I/O	ST	
RA10	_	29	I/O	ST	
RA14	_	66	I/O	ST	
RA15	_	67	I/O	ST	
RB0	16	25	I/O	ST	
RB1	15	24	I/O	ST	
RB2	14	23	I/O	ST	
RB3	13	22	I/O	ST	
RB4	12	21	I/O	ST	
RB5	11	20	I/O	ST	
RB6	17	26	I/O	ST	
RB7	18	27	I/O	ST	
RB8	21	32	I/O	ST	
RB9	22	33	I/O	ST	
RB10	23	34	I/O	ST	
RB11	24	35	I/O	ST	
RB12	27	41	I/O	ST	
RB13	28	42	I/O	ST	
RB14	29	43	I/O	ST	1
RB15	30	44	I/O	ST	1
Legend:	CMOS = CM ST = Schmit	IOS compati t Trigger inp	ble inpu ut with (it or output CMOS level	Analog = Analog input I = Input O = Output Is TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_	—	—		—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	-	—	—		—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDKPBA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BMXDK	PBA<7:0>					

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

REGIST	ER 5-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
bit 9-8	IS1<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• $010 = \text{Interrupt priority is } 2$
	0.01 = Interrupt priority is 2
	000 = Interrupt is disabled
bit 1-0	ISO<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
Note:	This register represents a generic definition of the IPCx register. Refer to Table 5-1 for the exact bi
	definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—		_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	—	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
Dit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)0 = No interrupt is pending
© 2014-201	16 Microchin Technology Inc. Preliminary

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	-	—	—	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—		—	-	-			—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—		—	-	-			—
	R/WC-0, HS	R-0	R/WC-0, HS					
7:0	STALLIE		RESUMEIE(2)		TRNIF(3)	SOFIE	LIERRIE(4)	URSTIF ⁽⁵⁾
	OTALLI	ALIACHIC'		IULEIF		JOFIE	UENRIFY	DETACHIF ⁽⁶⁾

REGISTER 10-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	e bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

510 0 1	Ŭ	
bit 7		STALLIF: STALL Handshake Interrupt bit
		1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		$1 =$ K-State is observed on the D+ or D- pin for 2.5 μ s
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)
		0 = NO idle condition detected
bit 3		TRNIF: loken Processing Complete Interrupt bit ⁽⁹⁾
		\perp = Processing of current token is complete; a read of the UTSTAT register will provide endpoint information
hit O		
DIL Z		1 = SOF token received by the peripheral or the SOF threshold reached by the bost
		0 = SOF token was not received nor threshold reached
hit 1		UERRIE: USB Error Condition Interrupt bit ⁽⁴⁾
Sit 1		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1:	This bit is valid only if the HOSTEN bit is set (see Register 10-11), there is no activity on the USB for
		2.5 μ s, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

ess)		e								Bi	ts								
Virtual Addi (BF88_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000		31:16	—	_	—	—	_	—	—	—	—	_	—	—	_	—	—	—	0000
0000	ANSELA	15:0	_	_	_	_		ANSELA10	ANSELA9	—	_		—	_		-	—	_	0060
6010	TRISA	31:16	—	_	_	—	_	_	—	_	—	_	—	_	_	_	—	_	0000
0010	INIOA	15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020	PORTA	31:16	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	_	0000
0020		15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	L/(//(15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0040	000/1	15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	CNPUA15	CNPUA14	—	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	—	—	—	_	_	_	—	_	—	_	—		_	—	—		0000
	on bri	15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	_	_	—			—	—	—	_	—	_	_		_	_	0000
		15:0	ON	_	SIDL	—			—	—	—	_	—	_	_		_	_	0000
6080	CNENA	31:16	—	_	_	—		_	—	—		—	—	_	—	—	_	_	0000
		15:0	CNIEA15	CNIEA14	_	—		CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	—	—	—	_		—	-	_	—	_	—	_	_	_	—	_	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		â								Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200		31:16	_		—		_	—	-	-	-	—	—	-	—	—	—	_	0000
0200	ANOLLO	15:0		—			_					—			ANSELC3	ANSELC2	ANSELC1		000E
6210	TRISC	31:16	_			_	_	—	_	_	_	—	—	_	_	—	_		0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	—	_	—	—	—	_	F000
6220	DODTO	31:16	_	—	—	—	—	_				_	_		_	_	-		0000
0220	FURIC	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
6220	LATC	31:16	—	—	—	_	_	_	—	—	—	—	-	_	—	_	—	—	0000
0230	LAIC	15:0	LATC15	LATC14	LATC13	LATC12	_	_	—	—	—	—	-	_	—	_	—	—	xxxx
6240	00000	31:16	—	—	—	_	_	_	—	—	—	—	-	_	—	_	—	—	0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	_				_	_		_	_	-		0000
6250		31:16	—	—	_	_	—	_				_	—		-	—	-		0000
0250	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	—	—	—	—	-	_	—	_	—	—	0000
6260		31:16	—	—	—	_	_	_	—	—	—	—	-	_	—	_	—	—	0000
0200	CINFDC	15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	—	—	—	—	-	_	—	_	—	—	0000
6270	CNICONIC	31:16	—	—	—	_	_	_	—	—	—	—	-	_	—	_	—	—	0000
0270	CINCOINC	15:0	ON	—	SIDL	_	_	_	—	—	—	—	-	_	—	_	—	—	0000
6290		31:16	—	—		_	_	_	_	_	_	_	_	_	-	_	_	_	0000
0200	CINEINC	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_	—	—	—	—	-	_	—	_	—	—	0000
6200	CNETATO	31:16		—		—	—		—	—	—			—	—	—	—	—	0000
0290	CNSTATE	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_		—	_	_	_		_	—	_	_	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

-		F		170131		1023 0													
ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_	—	—	—	—	—	—	—		_		—	—	_	—	_	0000
		15:0	_	_	_	_	_	_	_	_		TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	007F
6520	PORTE	31:16	—		—		—	_		—	—	_		_		_	_		0000
		15:0	—	_	—	_	—	_	_	—	_	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530		31:16	—	_	—	_	_	—	_	—	_	—	_	_		_	_	—	0000
0000	LAII	15:0	—	_	—	_	—	_	_	_	_	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCE	31:16		-	-	-	—	-	-			—		-	—	-	-	—	0000
0540	ODCF	15:0		_	_	_	_	_	_	—	_	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
0550		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6550	CNPUF	15:0	_		_		_	-		—		CNPUF6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
0500		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	CNPDF	15:0	_	_	_	_	_	_	_	_	_	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570		31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
0570	CINCOINF	15:0	ON	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0500		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_	_	—	0000
6580	CNENF	15:0	_	_	_	_	—	_	_	_	_	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	0000
6590	CNSTATF	15:0	_		_		_					CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-13: PORTF REGISTER MAP FOR PIC32MX120F064H, PIC32MX130F128H, PIC32MX150F256H, AND PIC32MX170F512H DEVICES ONLY

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				RDATAIN<	15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RDATAIN<	<7:0>			

REGISTER 20-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **RDATAIN<15:0>:** Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 20-5) is used for reads instead of PMRDIN.

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—			FILHIT<4:0>		
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_			I	CODE<6:0>(1)		

REGISTER 23-4: C1VEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

```
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Reserved
         10000 = Reserved
         01111 = Filter 15
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
         ICODE<6:0>: Interrupt Flag Code bits<sup>(1)</sup>
bit 6-0
         1111111 = Reserved
         1001001 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
         1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0111111 = Reserved
         0010000 = Reserved
         0001111 = FIFO15 Interrupt (C1FSTAT<15> set)
         0000000 = FIFO0 Interrupt (C1FSTAT<0> set)
```


REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 20-16 FSEL10<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN9: Filter 9 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

24.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Analog Comparator module contains three comparators that can be configured in a variety of ways.

The following are the key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 24-1.

FIGURE 24-1: COMPARATOR BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		—	—
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				IRNG	<1:0>			

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

- 1111 = IC4 Capture Event is selected
- 1110 = C2OUT pin is selected
- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

28.2 Registers

Virtual Address (BFC0_#) Bits All Resets Bit Range Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY _ _ _ _ _ ____ _ xxxx _ _ _ _ _ 0BF0 DEVCFG3 15:0 USERID<15:0> xxxx 31:16 FPLLODIV<2:0> _ — _ _ _ _ _ _ _ _ _ xxxx _ 0BF4 DEVCFG2 UPLLEN⁽¹⁾ 15:0 _ UPLLIDIV<2:0>(1) FPLLMUL<2:0> _ FPLLIDIV<2:0> xxxx _ _ _ FWDTWINSZ<1:0> FWDTEN WINDIS WDTPS<4:0> 31:16 _ _ xxxx _ ____ _ 0BF8 DEVCFG 15:0 FCKSM<1:0> FPBDIV<1:0> OSCIOFNC POSCMOD<1:0> IESO SOSCE FNOSC<2:0> _ _ _ _ xxxx 31:16 CP BWP PWP<9:6> _ _ _ _ _ _ _ _ xxxx _ _ 0BFC DEVCFG0 15:0 PWP<5:0> _ _ _ ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ _ _

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE AND REVISION ID SUMMARY

ess		0								Bi	ts								(1)
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F200	CECCON	31:16	—	_	_	—	_	—	—	_	_	—	—	_	—	—	_	—	0000
F200	CFGCON	15:0	-	_	IOLOCK	PMDLOCK	_	_	—	_	_	—	—	_	JTAGEN	TROEN ⁽²⁾	—	TDOEN	000B
E000		31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F220	DEVID	15:0								DEVID	<15:0>								xxxx
5000		31:16								OVOREN	/~21.0>								0000
F230	STOKET	15:0	0000																

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device.

2: This bit is not available on 64-pin devices.

NOTES:

TABLE 31-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА		ISTICS	Standar (unless Operatir	d Operat otherwis	ing Cond se stated) ature -4 -4	$\begin{array}{l} \text{litions: 2.}\\ 0^{\circ}\text{C} \leq \text{TA}\\ 0^{\circ}\text{C} \leq \text{TA} \end{array}$	3V to 3.6V ≤ +85°C for Industrial ≤ +105°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width		1 Трв	_	_	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	_	2 Трв	_	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	—	_	_

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-40: OTG ELECTRICAL SPECIFICATIONS

АС СНА	RACTERI	STICS	Standa (unless Operatir	rd Opera otherwing tempe	ating Con ise stated erature	ditions: J) -40°C ≤ 1 -40°C ≤ 1	2.3V to 3.6V $T_A \le +85^{\circ}C$ for Industrial $T_A \le +105^{\circ}C$ for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—
USB318	VDIFS	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 k Ω load connected to ground

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--

TABLE 31-41: CTMU CURRENT SOURCE SPECIFICATIONS

	DC CHAI	RACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3):2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
CTMU CURRENT SOURCE										
CTMUI1	IOUT1	Base Range ⁽¹⁾	_	0.55		μA	CTMUCON<9:8> = 01			
CTMUI2	IOUT2	10x Range ⁽¹⁾	—	5.5	_	μA	CTMUCON<9:8> = 10			
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11			
CTMUI4	IOUT4	1000x Range ⁽¹⁾	—	550	_	μA	CTMUCON<9:8> = 00			
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUCON<9:8> = 01			
			_	0.658	_	V	TA = +25°C, CTMUCON<9:8> = 10			
			_	0.721	_	V	TA = +25°C, CTMUCON<9:8> = 11			
CTMUFV2	Vfvr	Temperature Diode Rate of Change ^(1,2)	—	-1.92	_	mV/ºC	CTMUCON<9:8> = 01			
			—	-1.74	_	mV/ºC	CTMUCON<9:8> = 10			
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11			

Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.