

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f512l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN28/RG15	36	Vss
2	Vdd	37	VDD
3	AN22/RPE5/PMD5/RE5	38	TCK/CTED2/RA1
4	AN23/PMD6/RE6	39	AN34/RPF13/SCK3/RF13
5	AN27/PMD7/RE7	40	AN35/RPF12/RF12
6	AN29/RPC1/RC1	41	AN12/PMA11/RB12
7	AN30/RPC2/RC2	42	AN13/PMA10/RB13
8	AN31/RPC3/RC3	43	AN14/RPB14/CTED5/PMA1/RB14
9	RPC4/CTED7/RC4	44	AN15/RPB15/OCFB/CTED6/PMA0/RB15
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6	45	Vss
11	AN17/C1INC/RPG7/PMA4/RG7	46	Vdd
12	AN18/C2IND/RPG8/PMA3/RG8	47	AN36/RPD14/RD14
13	MCLR	48	AN37/RPD15/SCK4/RD15
14	AN19/C2INC/RPG9/PMA2/RG9	49	RPF4/PMA9/RF4
15	Vss	50	RPF5/PMA8/RF5
16	Vdd	51	RPF3/RF3
17	TMS/CTED1/RA0	52	AN38/RPF2/RF2
18	AN32/RPE8/RE8	53	AN39/RPF8/RF8
19	AN33/RPE9/RE9	54	RPF7/RF7
20	AN5/C1INA/RPB5/RB5	55	RPF6/SCK1/INT0/RF6
21	AN4/C1INB/RB4	56	SDA1/RG3
22	PGED3/AN3/C2INA/RPB3/RB3	57	SCL1/RG2
23	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	58	SCL2/RA2
24	PGEC1/AN1/RPB1/CTED12/RB1	59	SDA2/RA3
25	PGED1/AN0/RPB0/RB0	60	TDI/CTED9/RA4
26	PGEC2/AN6/RPB6/RB6	61	TDO/RA5
27	PGED2/AN7/RPB7/CTED3/RB7	62	VDD
28	VREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVdd	65	Vss
31	AVss	66	RPA14/RA14
32	AN8/RPB8/CTED10/RB8	67	RPA15/RA15
33	AN9/RPB9/CTED4/RB9	68	RPD8/RTCC/RD8
34	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	69	RPD9/RD9
35	AN11/PMA12/RB11	70	RPD10/PMA15/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To acc	ess the docume	ents listed	below,
	browse	e to the docume	ntation se	ction of
	the	Microchip	web	site
	(www.r	nicrochip.com).		

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- · Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001123)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Number								
Pin Name	64-pin QFN/ 100-pin TQFP TQFP		Pin Type	Buffer Type	Description			
U3CTS	PPS	PPS	-	ST	UART3 Clear to Send			
U 3RTS	PPS	PPS	0		UART3 Ready to Send			
U3RX	PPS	PPS		ST	UART3 Receive			
U3TX	PPS	PPS	0	_	UART3 Transmit			
U4CTS	PPS	PPS	I	ST	UART4 Clear to Send			
U4RTS	PPS	PPS	0	_	UART4 Ready to Send			
U4RX	PPS	PPS	I	ST	UART4 Receive			
U4TX	PPS	PPS	0	_	UART4 Transmit			
U5CTS	_	PPS		ST	UART5 Clear to Send			
U5RTS	_	PPS	0	_	UART5 Ready to Send			
U5RX	—	PPS	Ι	ST	UART5 Receive			
U5TX	_	PPS	0	_	UART5 Transmit			
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1			
SDI1	PPS	PPS	I	_	SPI1 Data In			
SDO1	PPS	PPS	0	ST	SPI1 Data Out			
SS1	PPS	PPS	I/O	_	SPI1 Slave Synchronization for Frame Pulse I/O			
SCK2	4	10	I/O	ST	Synchronous Serial Clock Input/Output for SPI2			
SDI2	PPS	PPS	Ι	_	SPI2 Data In			
SDO2	PPS	PPS	0	ST	SPI2 Data Out			
SS2	PPS	PPS	I/O	_	SPI2 Slave Synchronization for Frame Pulse I/O			
SCK3	29	39	I/O	ST	Synchronous Serial Clock Input/Output for SPI3			
SDI3	PPS	PPS	I	_	SPI3 Data In			
SDO3	PPS	PPS	0	ST	SPI3 Data Out			
SS3	PPS	PPS	I/O	_	SPI3 Slave Synchronization for Frame Pulse I/O			
SCK4	_	48	I/O	ST	Synchronous Serial Clock Input/Output for SPI4			
SDI4	_	PPS	I	_	SPI4 Data In			
SDO4	—	PPS	0	ST	SPI4 Data Out			
SS4	_	PPS	I/O	_	SPI4 Slave Synchronization for Frame Pulse I/O			
SCL1	37 ⁽¹⁾ , 44 ⁽²⁾	57 ⁽¹⁾ , 66 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1			
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1			
SCL2	32	58	I/O	ST	Synchronous Serial Clock Input/Output for I2C2			
SDA2	31	59	I/O	ST	Synchronous Serial Data Input/Output for I2C2			
TMS	23	17	Ι	ST	JTAG Test Mode Select Pin			
ТСК	27	38	I	ST	JTAG Test Clock Input Pin			
TDI	28	60	I	_	JTAG Test Clock Input Pin			
TDO	24	61	0		JTAG Test Clock Output Pin			
Legend:	CMOS = CN ST = Schmit	10S compati	ble inpu	It or output	Analog = Analog input I = Input O = Output			

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—		—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDUPBA<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				BMXDU	PBA<7:0>					

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	/ = Writable bit U = Unimplemented bit, re		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

REGIST	ER 5-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
bit 9-8	IS1<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP0<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• $010 = \text{Interrupt priority is } 2$
	0.01 = Interrupt priority is 2
	000 = Interrupt is disabled
bit 1-0	ISO<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
Note:	This register represents a generic definition of the IPCx register. Refer to Table 5-1 for the exact bi
	definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	ROTRIM<8:1>										
00.10	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	ROTRIM<0>	—	—	—	—	—	—	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	—	—	—			
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	—	_	_	_	_	_			

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	—	—	—		—		—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	-	—	-	—		
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—	—	—		—		—		
	R/WC-0, HS	U-0	R/WC-0, HS							
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF		

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend: WC = Write '1' to clear		HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0						
15.0	—	—	—	—	—	—	—	—
	R/WC-0, HS	R/WC-0, HS						
7:0	BTSEE						CRC5EF ⁽⁴⁾	חוחבר
	DISEF	BMXEF DMAEF		BIOEF	DINOLF	GRUIDEF	EOFEF ^(3,5)	PIDEF

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	it
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

ess	-	¢,								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6440		31:16	_				—			—		—			—	—		—	0000
0440	U3DKG.	15:0		Baud Rate Generator Prescaler 000													0000		
6600		31:16	_	_	—	_		_	_	—			_	_			_	—	0000
0000	OHMODE	15:0	ON		SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	114STA(1)	1) 31:16 — — — — — — ADM_EN					ADDF	R<7:0>				0000							
0010	04017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620		31:16	—		_	_		_		—			_	_	_	—	_	—	0000
0020	OFINILO	15:0	—		_	_		_		TX8				Transmit	Register				0000
6630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OHIVINEO	15:0	—		_	_		_		RX8				Receive	Register				0000
6640		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	0 10100	15:0		Baud Rate Generator Prescaler 0000													0000		
6800	U5MODE(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	COMODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA(1,2)	31:16	—	—	—	_	—	_	_	ADM_EN				ADDR	R<7:0>	1		1	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
0020	001/11/20	15:0	—	_	—	_	—	_	_	TX8				Transmit	Register				0000
6830	U5RXRFG(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
	00.04.20	15:0	—	_	—	_	—	_	_	RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
00.0		15:0 Baud Rate Generator Prescaler							0000										

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

NOTES:

22.1 **Control Registers**

TABLE 22-1: ADC REGISTER MAP

ess				Bits															
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	-	_	_	_	_		_	-	_	-	_	_	_	_	_	_	0000
9000	ADICONI	15:0	ON	_	SIDL	_	_		FORM<2:0>	>		SSRC<2:0>	>	CLRASAM	_	ASAM	SAMP	DONE	000
0010		31:16	_	—	—	—	—		—	_	—	_	—	—	—	—	—	—	0000
9010	AD ICON2.	15:0		VCFG<2:0>	>	OFFCAL	_	CSCNA	-		BUFS			SMPI	<3:0>		BUFM	ALTS	0000
9020		31:16		—	—	—	_	—	-		—		—	—	—	—	-	—	0000
0020	/ D TOONO	15:0	ADRC	—	—			SAMC<4:0	>					ADCS	8<7:0>				0000
9040	AD1CHS(1)	31:16	CH0NB	—			CH0SB	<5:0> ⁽²⁾			CH0NA	—		•	CH0SA	<5:0>(2)			000
0010		15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	000
9050	AD1CSSL ^(1,3)	31:16	CSSL31	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24	CSSL23	CSSL22	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16	0000
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	000
9060	AD1CSSL2(1)	31:16	—	_	—	—	—		—	—		—	—	—		CSSL50	CSSL49	CSSL48	000
		15:0	CSSL47	CSSL46	CSSL45	CSSL44	CSSL43	CSSL42	CSSL41	CSSL40	CSSL39	CSSL38	CSSL37	CSSL36	CSSL35	CSSL34	CSSL33	CSSL32	0000
9070	ADC1BUF0	31:16							ADC Res	sult Word 0	(ADC1BUF	0<31:0>)							000
		15:0																	0000
9080	ADC1BUF1	31:16 15:0							ADC Res	sult Word 1	(ADC1BUF	1<31:0>)							0000
0000		31:16								ult Mard O		0-21-0-1							000
9090	ADC1B0F2	15:0							ADC Res	suit vvora 2	(ADC1BUF	2<31:0>)							000
00.00		31:16								sult Word 3		3~31.05)							0000
3070	ADCIDOI 3	15:0							ADC Nea			5551.02)							000
90B0	ADC1BUE4	31:16							ADC Res	ault Word 4	(ADC1BUE	4<31.0>)							000
0000		15:0							ABO NO		0.001001	1.01.07)							0000
9000	ADC1BUF5	ADC Result Word 5 (ADC18LIE5<31:0>)											000						
		15:0									(,							0000
90D0	ADC1BUF6	31:16							ADC Res	ult Word 6	(ADC1BUF	6<31:0>)							0000
		15:0										,							0000
90E0	ADC1BUF7	31:16							ADC Res	sult Word 7	(ADC1BUF	7<31:0>)							0000
		15:0																	0000
90F0	ADC1BUF8	31:16							ADC Res	ult Word 8	(ADC1BUF	8<31:0>)							0000
		15:0																	0000

Legend: 3:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV registers" for details. Note 1: For 64-pin devices, the MSB of these bits is not available. 2:

For 64-pin devices, only the CSSL30:CSSL0 bits are available.

DS60001290D-page 233

Preliminary

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

NOTES:

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 19-10 **PWP<9:0>:** Program Flash Write-Protect bits

	Prevents s represent	 Belected program Flash memory pages from being modified during code execution. The PWP bits the one's compliment of the number of write protected program Flash memory pages. 11 = Disabled 10 = Memory below 0x0400 address is write-protected 11 = Memory below 0x0800 address is write-protected 12 = Memory below 0x000 address is write-protected 13 = Memory below 0x000 address is write-protected 14 = Memory below 0x1000 (4K) address is write-protected 15 = Memory below 0x1400 address is write-protected 16 = Memory below 0x1400 address is write-protected 16 = Memory below 0x1600 address is write-protected 16 = Memory below 0x1600 address is write-protected 17 = Memory below 0x100 (4K) address is write-protected 18 = Memory below 0x100 (4K) address is write-protected 19 = Memory below 0x100 address is write-protected 10 = Memory below 0x100 address is write-protected 11 = Memory below 0x2000 (8K) address is write-protected 12 = Memory below 0x200 address is write-protected 13 = Memory below 0x200 address is write-protected 14 = Memory below 0x200 address is write-protected 15 = Memory below 0x200 address is write-protected 16 = Memory below 0x200 address is write-protected 17 = Memory below 0x200 address is write-protected 18 = Memory below 0x200 address is write-protected 19 = Memory below 0x200 address is write-protected 10 = Memory below 0x200 address is write-protected 11 = Memory below 0x200 address is write-protected 12 = Memory below 0x300 address is write-protected 13 = Memory below 0x300 address is write-protected 14 = Memory below 0x300 address is write-protected 15 = Memory below 0x300 address is write-protected 16 = Memory below 0x300 address is write-protected 17 = Memory below 0x3400 address is write-protected 18
	11111100	000 = Memory below 0x3C00 address is write-protected
	11111011	11 = Memory below 0x4000 (16K) address is write-protected
	•	
	•	11 - Memory below 0x10000 (64K) address is write protected
	•	LII – Memory below 0x10000 (04K) address is write-protected
	•	
	11011111	11 = Memory below 0x20000 (128K) address is write-protected
	•	
	•	
	10111111	11 = Memory below 0x40000 (256K) address is write-protected
	•	
	•	
	01111111	11 = Memory below 0x80000 (512K) address is write-protected
	•	
	•	100 = All possible memory is write-protected
	Noto:	These bits are effective only if Reet Elash is also protected by clearing the RW/R bit
	Note.	(DEVCFG0<24>).
bit 9-5	Reserved	: Write '1'
bit 4-3	ICESEL<1	:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
	11 = PGE 10 = PGE 01 = PGE 00 = Rese	C1/PGED1 pair is used C2/PGED2 pair is used C3/PGED3 pair is used prved
bit 2	JTAGEN:	JTAG Enable bit ⁽¹⁾
	1 = JTAG	is enabled
	0 = JTAG	is disabled
bit 1-0	DEBUG<1	:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
	1x = Debu 0x = Debu	igger is disabled igger is enabled

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	—	—	—	—	—	—	FWDTWINSZ<1:0>		
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:10	FWDTEN WINDIS		—	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM	/<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	POSCMOD<1:0>	
7:0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
	IESO	_	FSOSCEN	_			FNOSC<2:0>		

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Reserved: Write '1'

bit 25-24 **FWDTWINSZ:** Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

6
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

АС СНА	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
Clock P	arameter	5								
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 31-35			
Conver	sion Rate									
AD55	TCONV	Conversion Time	_	12 TAD	—	_	—			
AD56	FCNV	Throughput Rate	—	—	1000	ksps	AVDD = 3.0V to 3.6V			
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V			
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns			
Timing	Paramete	rs								
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾		1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected			
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	_			
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	_	0.5 TAD	—		_			
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾		—	2	μS	—			

TABLE 31-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		Standard Operating te	perating Conditions: 2.3V to 3.6V erwise stated) mperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions				
Idle Current (II	DLE): Core Of	f, Clock on E	Base Current	(Note 1)				
MDC34a	9.5	24	mA 50 MHz					

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHAF	RACTERIST	ïcs	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions							
Power-Down Current (IPD) (Note 1)											
MDC40k	50	150	μA	-40°C	Rass Rower Down Current						
MDC40n	250	650	μA	+85°C	Base Power-Down Current						
Module D	oifferential (Current									
MDC41e	15	55	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)						
MDC42e	34	55	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)						
MDC43d	1100	1800	μA	3.6V ADC: △IADC (Notes 3,4)							

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support