

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128h-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Special Function Register Maps

TABLE 4-2: BUS MATRIX REGISTER MAP

ess)		Ð										Bits							
Virtual Ado (BF88_	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	_		BMXCHEDMA	_	_	_	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BINIXCON	15:0		-		_	BMXWSDRM	_	_	-	BI	MXARB<2:0>		0047					
2010	2010 BMXDKPBA(1)	31:16	_	_	_	_		_	-		—	_	—	—	_		—	—	0000
	DIVIADA	15:0	0 BMXDKPBA<15:0> 0000										0000						
		31:16	—	_	—	_	_	-	_	—	_	_	_	—	_	_	—	—	0000
2020	DIVINDODDA	15:0		BMXDUDBA<15:0>										0000					
2020 PM		31:16	—	—	—	—	—	_	—	—	—	_	—	—	_	_	—	—	0000
2000		15:0									BM	XDUPBA<15:0>							0000
2040	BMXDRMS7	31:16	BMXDBMS7<31:05																
2040	BINADI MICZ	15:0						<u> </u>			Diviz								xxxx
2050	BMXPLIPBA(1)	31:16	—	—	—	—	—	—	—	—	—	—	—	—		BMXPUPBA	<19:16>		0000
2000		15:0									BM	XPUPBA<15:0>							0000
2060	BMXPFMS7	31:16									BM	XPFMS7<31.0>							xxxx
2000	DWATTWOZ	15:0									DIVID								xxxx
2070	BMXBOOTS7	31:16									BMX	BOOTS7<31.03	>						0000
20/0	ENIXEOUTOL	15:0																	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0									
31:24	—	—	_	—	—		—	—			
00.40	U-0	U-0									
23.10	—	—	-	—	—		Bit 25/17/9/1 U-0 U-0 R-0 R-0	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8		BMXDKPBA<15:8>									
7.0	R-0	R-0									
7:0				BMXDK	PBA<7:0>		R-0				

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	_	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	_	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0	_	_		_	_		_	SWRST ⁽¹⁾

REGISTER 7-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Cleared by hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0						
31:24	—	—	_	_	—		_	_
00.40	R/W-0	R/W-0						
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	Bit 25/17/9/1 U-0 R/W-0 CHTAIE U-0 R/W-0 CHTAIF	CHERIE
45.0	U-0	U-0						
15:8	—	—	—	—	—	_	—	—
7.0	R/W-0	R/W-0						
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	25/17/9/1 U-0 R/W-0 CHTAIE U-0 R/W-0 R/W-0 CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
Dit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2) 0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
© 2014-201	16 Microchin Technology Inc. Preliminary

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23.10	—	—	_	_	_	_	—	_
15.0	U-0	U-0						
15.0	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
1.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	Bit 25/17/9/1 U-0 U-0	VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt enabled
 - 0 = ID interrupt disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt enabled
 - 0 = 1 millisecond timer interrupt disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt enabled
 - 0 = Line state interrupt disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt enabled
 - 0 = ACTIVITY interrupt disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt enabled
 - 0 = Session valid interrupt disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt enabled
 - 0 = B-session end interrupt disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt enabled
 - 0 = A-VBUS valid interrupt disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0							
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0							
23.10	—	—	—	—	—	—	—	—	
15.0	U-0	U-0							
15.0	—	—	—	—	—	—	—	—	
	R/WC-0, HS	R/WC-0, HS							
7:0	BTSEE						CRC5EF ⁽⁴⁾	חוחבר	
	DISEF	DIVIALE	DIVIALLY	BIOEF	DINOLF	GROIDEF	EOFEF ^(3,5)	PIDEF	

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	it
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
EA 0.4		31:16		—	—	—	—	—	—	—	—	_	—	—	—	—	—	_	0000
FA04	INTIK	15:0		_	—	—	—	_		_	—	—	—	—		INT1F	R<3:0>		0000
FA08	INT2R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17,00	1111211	15:0	_	_	_		_	_	_	—	_		_	_		INT2F	?<3:0>		0000
FAOC	INT3R	31:16					—			_	—				_				0000
17.00	INTOIN	15:0	_		—		—			_	—		—	—		INT3F	?<3:0>		0000
FA10	INT4R	31:16		—	—	—	—	—	—	—	—		—	—	-				0000
17110		15:0		—			—	—	—	—	—					INT4F	?<3:0>		0000
FA18	T2CKR	31:16	_	—			—	—		—	—				—		—	_	0000
		15:0	_	—			—	—		—	—					T2CKI	R<3:0>		0000
FA1C	T3CKR	31:16	—	—			—	—	—	—	—				—		—	_	0000
		15:0	—	—			—	—	—	—	—					T3CKI	R<3:0>		0000
FA20	T4CKR	31:16	_	_			—	_	_	_	_	-			—		—	_	0000
		15:0		—	—	—	—	—	—	—			—	—		T4CKI	R<3:0>		0000
FA24	T5CKR	31:16		—		—	—	—	—	—	—							—	0000
17 02 1	Toolar	15:0	—	_			_	_	_	—	—					T5CK	R<3:0>		0000
FA28	IC1R	31:16	—		—	—							—	—			—	—	0000
17120	lont	15:0	—	_			_	_	_	—	—					IC1R	<3:0>		0000
FA2C	IC2R	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17.20	10211	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
FA30	IC3R	31:16	-	—	-	-	—	—	—	—	—		-	-	—	—	—	—	0000
17.00	1001	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
FA 34	IC4R	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17.04	10413	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
FA38	IC5R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1,730	10011	15:0	—	—	—	—	—	—		—			—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—		—			—	—	—		—	—	0000
1740		15:0	—	—	—	—		—		—			—	—		OCFA	R<3:0>		0000
EA50		31:16	—	—	—	—		—		—			—	—	—		—	—	0000
1,430	UINAN	15:0	_	—	—	—	—	—	—	—	—		—	—		U1RX	R<3:0>		0000
EA 54	LIACTER	31:16	_	—	—	—	—	—	—	—	—		—	—	—	—	—	—	0000
FA04	UICISK	15:0	_	—	-	—	_	—	—	—	_	-	-	-		U1CTS	R<3:0>		0000
EAEO		31:16	_	—	—	—	_	—		—	_	—	—	—	—	_	—	—	0000
FAS6	UZKAR	15:0	—	—	-	-	—	—	—	—	—	—	-	_		U2RX	R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

ess		â									Bits								(0
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	—	—	_	—	—	—	—	_	—	_	_	_	—	—	—	_	0000
0000	WDICON	15:0	ON	—	—	—		—	—	—	—		SV	VDTPS<4:()>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	AUDEN ⁽¹⁾			—	AUDMONO ^(1,2)		AUDMOD)<1:0>(1,2)

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

)'
)

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Read as '0'

- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit 1 = Frame Error overflow generates error events 0 = Frame Error does not generate error events bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit 1 = Receive overflow generates error events 0 = Receive overflow does not generate error events bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit 1 = Transmit Underrun Generates Error Events 0 = Transmit Underrun Does Not Generates Error Events bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions) 1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data 0 = A ROV is a critical error which stop SPI operation bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions) 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty 0 = A TUR is a critical error which stop SPI operation AUDEN: Enable Audio CODEC Support bit⁽¹⁾ bit 7 1 = Audio protocol enabled 0 = Audio protocol disabled bit 6-5 Unimplemented: Read as '0' AUDMONO: Transmit Audio Data Format bit^(1,2) bit 3 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo bit 2 Unimplemented: Read as '0' AUDMOD<1:0>: Audio Protocol Mode bit^(1,2) bit 1-0 11 = PCM/DSP mode 10 = Right Justified mode 01 = Left Justified mode $00 = I^2 S \mod I$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

software

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	—	—	—	—	—	—					
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾											
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾			WADDF	<<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	WADDR<7:0>												

REGISTER 20-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-16 Unimplemented: Read as '0'
- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
31.24	—	—	—	—	—	—	CAL<9):8>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	CAL<7:0>											
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
10.0	ON ^(1,2)	—	SIDL	—	—	—	—	-				
7.0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0				
7.0	RTSECSEL ⁽³⁾	RTCCLKON	_	—	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE				

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is reset only on a Power-on Reset (POR).

REGISTE bit 7-0	ER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED) ARPT<7:0>: Alarm Repeat Counter Value bits ⁽³⁾ 11111111 = Alarm will trigger 256 times
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0 .
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
3:	This assumes a CPU read will execute in less than 32 PBCLKs.
Note:	This register is reset only on a Power-on Reset (POR).

U-0

U-0

R/W-0

SMPI<3:0>

U-0

R/W-0

CSCNA

R/W-0

Bit

25/17/9/1

U-0

U-0

U-0

_

R/W-0

BUFM

Bit

24/16/8/0

U-0

U-0

U-0

R/W-0

ALTS

	ALGISTER 22-2. ADTCONZ. ADC CONTROL REGISTER 2									
Bit Range		Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit E 30/22/14/6 29/21/13/5 28/20	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2			
	21.24	U-0	U-0	U-0	U-0	U-0	U-0			
	31.24									

U-0

R/W-0

R/W-0

DECISTED 22 2. AD1CON2: ADC CONTROL REGISTER 2

U-0

R/W-0

U-0

_

VCFG<2:0>

Legend:

23:16

15:8

7:0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

U-0

R/W-0

OFFCAL

R/W-0

bit 31-16 Unimplemented: Read as '0'

U-0

R/W-0

R-0

BUFS

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	VREFH	VREFL		
000 AVDD 001 External VREF+ pin		AVss		
		AVss		
010	AVDD	External VREF- pin		
011	External VREF+ pin	External VREF- pin		
lxx	AVDD	AVss		

bit 12 OFFCAL: Input Offset Calibration Mode Select bit

- 1 = Enable Offset Calibration mode
 - Positive and negative inputs of the sample and hold amplifier are connected to VREFL
- 0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs

bit 9-8 Unimplemented: Read as '0'

- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16^{th} sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15^{th} sample/convert sequence

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
31.24	—	—	—	СР	—	—	—	BWP
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:10	—	—	—	—	PWP<9:6>			
45.0	R/P	R/P	R/P	R/P	R/P	R/P	r-1	r-1
15:8	PWP<5:0>							—
7.0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
7:0		_	_	ICESE	L<1:0>	JTAGEN ⁽¹⁾	DEBU	G<1:0>

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31 Reserved: Write '0'
- bit 30-29 Reserved: Write '1'
- bit 28 **CP:** Code-Protect bit
 - Prevents boot and program Flash memory from being read or modified by an external programming device.
 - 1 = Protection is disabled
 - 0 = Protection is enabled
- bit 27-25 Reserved: Write '1'
- bit 24 **BWP:** Boot Flash Write-Protect bit
 - Prevents boot Flash memory from being modified during code execution.
 - 1 = Boot Flash is writable
 - 0 = Boot Flash is not writable
- bit 23-20 Reserved: Write '1'
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

TABLE 31-34: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
Device	Device Supply									
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5		Lesser of VDD + 0.3 or 3.6	V	_			
AD02	AVss	Module Vss Supply	Vss	_	AVDD	V	(Note 1)			
Referen	ce Inputs									
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)			
AD06	Vrefl	Reference Voltage Low	AVss		VREFH – 2.0	V	(Note 1)			
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0		AVDD	V	(Note 3)			
AD08	IREF	Current Drain	_	250	400	μA	ADC operating			
AD08a			—	—	3	μA	ADC off			
Analog	Input	1			1					
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—			
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/2	V	—			
AD14	VIN	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	—			
AD15	_	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10 \ k\Omega \end{array}$			
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)			
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-		-				
AD20c	Nr	Resolution		10 data bit	S	bits	—			
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V			
AD22c	DNL	Differential Non-linearity	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)			
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V			
AD24c EOFF		Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V			
AD25c —		Monotonicity	_	_	—		Guaranteed			

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.