

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

TABLE 2: PIN NAMES FOR 64-PIN GENERAL PURPOSE DEVICES

64·	PIN QFN ⁽⁴⁾ AND TQFP (TOP VIEW)		
	PIC32MX120F064H PIC32MX130F128H PIC32MX150F256H PIC32MX170F512H 64	QFN ⁽⁴	1 64 TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	RPF3/RF3
2	AN23/PMD6/RE6	34	RPF2/RF2
3	AN27/PMD7/RE7	35	RPF6/SCK1/INT0/RF6
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	SDA1/RG3
5	AN17/C1INC/RPG7/PMA4/RG7	37	SCL1/RG2
6	AN18/C2IND/RPG8/PMA3/RG8	38	VDD
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	VDD	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/RB5	43	RPD9/RD9
12	AN4/C1INB/RB4	44	RPD10/PMA15/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMA14/RD11
14	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	46	RPD0/RD0
15	PGEC1/VREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3/RB7	50	AN25/RPD2/RD2
19	AVDD	51	AN26/C3IND/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10/RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	C3INC/RD6
23	TMS/CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	55	C3INB/RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	Vdd
26	Vdd	58	C3INA/RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/SCK3/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 11.0 "I/O Ports" for more information.
 Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

NOTES:

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 **Power Management**

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-1XX/2XX/5XX 64/100-pin family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

TABLE 4-1: SFR MEMORY MAP

Devinheral	Virtual	Address
Peripheral	Base	Offset Start
Interrupt Controller		0x1000
Bus Matrix		0x2000
DMA	0	0x3000
USB	0xBF88	0x5000
PORTA-PORTG		0x6000
CAN1		0xB000
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-Timer5		0x0600
IC1-IC5		0x2000
OC1-OC5		0x3000
I2C1-I2C2		0x5000
SPI1-SPI4		0x5800
UART1-UART5	0xBF80	0x6000
PMP	UXBF80	0x7000
ADC1		0x9000
DAC		0x9800
Comparator 1, 2, 3		0xA000
Oscillator		0xF000
Device and Revision ID		0xF200
Flash Controller		0xF400
PPS		0xFA00
Configuration	0xBFC0	0x0BF0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	_	_	_	-	_	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	_	_	—	_			_				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
10.0	—	_		—	_		—	_				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC				
7:0	_	_	_	_	_	_	_	SWRST ⁽¹⁾				

REGISTER 7-2: RSWRST: SOFTWARE RESET REGISTER

Legend: HC = Cleared by hardware								
R = Readable bit	W = Writable bit	ut U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

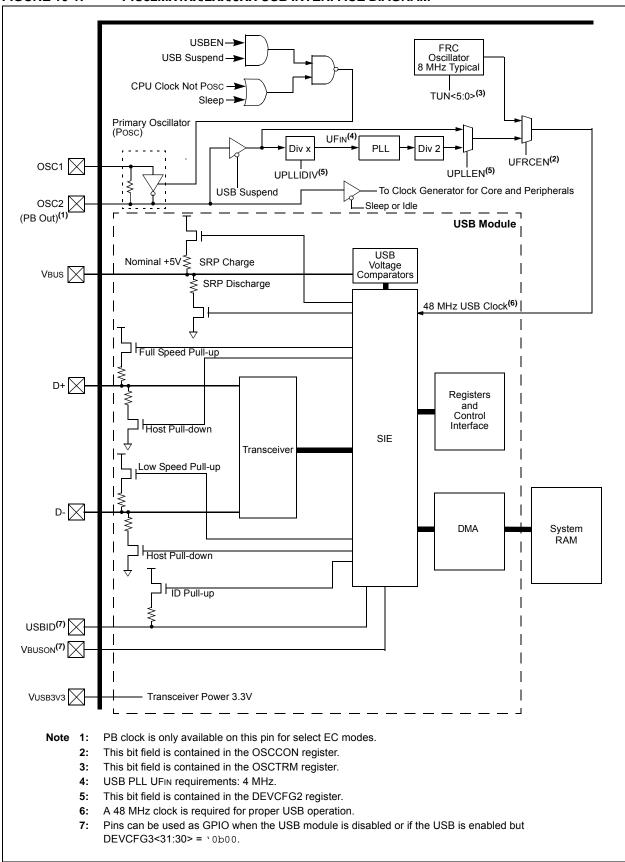
bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section
 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

- 111 = Clock is multiplied by 24
- 110 = Clock is multiplied by 21
- 101 = Clock is multiplied by 20
- 100 = Clock is multiplied by 19
- 011 = Clock is multiplied by 18
- 010 =Clock is multiplied by 17
- 001 =Clock is multiplied by 16
- 000 = Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)


On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

REGISTER 10-3. OTFWRC: 03B FOWER CONTROL REGISTER											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	-	—	—	-	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	-	—	—	_	—	_			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—		_			—	—			
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
7.0	UACTPND	—	_	USLPGRD	USBBUSY	_	USUSPEND	USBPWR			

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

Logonal						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Control Registers 13.2

TABLE 13-1: TIMER2 THROUGH TIMER5 REGISTER MAP

ess										Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	T2CON	31:16		—	_	_	—	-	—	-	_	l	_	_	—	—	_	_	0000
0000	12001	15:0	ON	—	SIDL	_	—	_	_	_	TGATE	-	TCKPS<2:0	>	T32	_	TCS	_	0000
0810	TMR2	31:16	_	—	—	—	—	—	—	—	—	_	—	_	—	—	—	_	0000
0010	TIVITYZ	15:0		-			-			TMR2	<15:0>								0000
0820	PR2	31:16	_	—	—	—	—	—	—	—	—	_	—	_	—	—	—	_	0000
0020	1112	15:0								PR2<	15:0>								FFFF
0400	T3CON	31:16	_	_	—	_		_	—	_	—		—	_	—		_		0000
0/100	10001	15:0	ON		SIDL	_		_	—	_	TGATE	-	TCKPS<2:0	>	—		TCS		0000
0A10	TMR3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0/110	1111110	15:0								TMR3	<15:0>								0000
0A20	PR3	31:16		_	—	—		—	—	—	—	—	—	_	—	—	—	—	0000
0/ 120		15:0								PR3<	15:0>								FFFF
0C00	T4CON	31:16	_		—	_		_	_	_	—		—	_	-		_		0000
		15:0	ON	—	SIDL	_	—	_	_	_	TGATE		TCKPS<2:0	>	T32	—	TCS		0000
0C10	TMR4	31:16	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—		0000
		15:0								TMR4	<15:0>								0000
0C20	PR4	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0								PR4<	15:0>								FFFF
0E00	T5CON	31:16	-	—	-	_	—	_	_	_	_		—	_	—	—	-	_	0000
		15:0	ON	—	SIDL	_	_	_	_	_	TGATE		TCKPS<2:0	>	_	_	TCS		0000
0E10	TMR5	31:16		—	_	—	_	_	—	-	—	_	_	_	_	_	—	_	0000
		15:0												0000					
0E20	PR5	31:16		—	—	_	—	—	—	_	—	_	—	_	_	—	—	—	0000
		15:0							ara ahaum i	PR5<									FFFF

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

16.1 Control Registers

TABLE 16-1: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 5 REGISTER MAP

ess										Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16	—	—	—	—	—	—	—	—	—	_	_	—	—	_	—		0000
3000		15:0	ON	ON — SIDL — — — — — OC32 OCFLT OCTSEL OCM<2:0> 0										0000					
3010	OC1R	31:16 15:0								OC1R	<31:0>								xxxx xxxx
3020	OC1RS	31:16 15:0								OC1RS	6<31:0>								xxxx xxxx
		31:16	_	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	0000
3200	OC2CON	15:0	ON	_	SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
		31:16																	xxxx
3210	OC2R	15:0	OC2R<31:0>										xxxx						
		31:16		· · · · · · · · · · · · · · · · · · ·										xxxx					
3220	OC2RS	15:0								OC2RS	6<31:0>								xxxx
		31:16		_	_	_	_	_		_	_			_	_	_	_	_	0000
3400	OC3CON	15:0	ON	_	SIDL	-	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
0.440	0.000	31:16								0.000	-0.1.0:								xxxx
3410	OC3R	15:0								OC3R	<31:0>								xxxx
3420	OC3RS	31:16								OC3R5	221.05								xxxx
3420	UCSRS	15:0								UCSRE	5<31.0>								xxxx
3600	OC4CON	31:16	—	—	_	—	—	—	—	—	_	—	—	—	—		—		0000
3000	004001	15:0	ON	_	SIDL	_	_	_	-	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3610	OC4R	31:16								OC4R	~31.0>								xxxx
3010	0040	15:0								0040	<31.02								xxxx
3620	OC4RS	31:16								OC4RS	2<31.05								xxxx
3020	00403	15:0		-		-	-	-	-	00400	5-51.0-	-			-				xxxx
3800	OC5CON	31:16	—	—	—	—	—				—	—	—		—		—	—	0000
5000	00000	15:0	ON	—	SIDL	_		_	—	_	—		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3810	OC5R	31:16								OC5R	<31.0>								xxxx
3010	0001	15:0									xxxx								
3820	OC5RS	31:16								00589	S<31:0>								xxxx
0020	000100	15:0								OUSKE	-01.0-								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	_	_	—	_	_	_	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	_	_	_	_	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER ('x' = 1 THROUGH 5)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode

bit 12-6 Unimplemented: Read as '0'

- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 **OCTSEL:** Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
31:24	—	—	—	- RXBUFELM<)>		
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
23:16	—	—	—	TXBUFELM<4:0>					
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0	
15:8	—	_	—	FRMERR	SPIBUSY	_	_	SPITUR	
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0	
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF	

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾
 - 1111 = Wait of 16 Трв •
 - 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)

bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾

11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB 00 = Wait of 1 TPB (default)

For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB

- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	_	_	_		—	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	—	—	—	—	_	
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ADRC	—	_			SAMC<4:0>(1)			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0	
7:0	ADCS<7:0> ⁽²⁾								

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB 2 (ADCS<7:0> + 1) = 4 TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess										Bit	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	01001	31:16		_	_	_	ABAT	F	REQOP<2:0	>	C	OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	C1CON	15:0	ON	-	SIDLE		CANBUSY	—	_	_		_	_		D	NCNT<4:0>	•		0000
B010	C1CFG	31:16	_		_		_	_	-		-	WAKFIL	_	_	-	S	EG2PH<2:0	>	0000
вото	CICFG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0)>	ŀ	PRSEG<2:0	>	SJW	<1:0>			BRP<	:5:0>			0000
B020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE		_		_	_	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
0020	01111	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	—	—	—	—	—	—	—	MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16	—	_	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
2000		15:0	—		_			FILHIT<4:0>	>					r	CODE<6:0>				0040
B040	C1TREC	31:16	_	—	_	—	_	_	—	—	_	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
		15:0				TERRC	NT<7:0>							RERRCN	T<7:0>				0000
B050	C1FSTAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	C1RXOVF	31:16 15:0	– RXOVF15	— RXOVF14	– RXOVF13		– RXOVF11	– RXOVF10	– RXOVF9	– RXOVF8	RXOVF7	– RXOVF6	– RXOVF5	— RXOVF4	– RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
		31:16	RAUVE 15	KAUVF14	RAUVEIS	RAUVE 12	RAUVEII	RAUVEIU	KAUVF9			RAUVEO	RAUVED	KAUVF4	RAUVES	RAUVEZ	RAUVEI	RAUVFU	0000
B070	C1TMR	15:0	CANTS<15:0> CANTSPRE<15:0>							0000									
		31:16				SID<10:0>						MIDE	_	EID<1	7.16>	xxxx			
B080	C1RXM0	15:0						0.0 10.0		EID<1	5.0>						2.0		XXXX
		31:16						SID<10:0>							MIDE		EID<1	7.16>	xxxx
B090	C1RXM1	15:0						0.0 10.0		EID<1	5.0>						2.0		XXXX
		31:16						SID<10:0>		210 11					MIDE	_	EID<1	7.16>	xxxx
B0A0	C1RXM2	15:0						0.0 10.0		EID<1	5:0>						2.0		XXXX
		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
B0B0	C1RXM3	15:0								EID<1	5:0>						ļ		xxxx
		31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0>	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
B0C0	C1FLTCON0	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0>	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
	0.151 700114	31:16	FLTEN7	MSEL	7<1:0>	FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0>						0000							
B0D0	C1FLTCON1	15:0	FLTEN5	MSEL	5<1:0>	FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0>						0000							
		31:16	FLTEN11	MSEL'	11<1:0>	FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0>						0000							
B0E0	C1FLTCON2	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0>	`		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000
B0F0	C1FLTCON3	31:16	FLTEN15	MSEL1	15<1:0>			FSEL15<4:0	>		FLTEN14	MSEL'	14<1:0>		F	SEL14<4:0>	•		0000
BUFU	GIFLI CONS	15:0	FLTEN13	MSEL1	13<1:0>			FSEL13<4:0	>		FLTEN12	MSEL'	12<1:0>		F	SEL12<4:0>	·		0000
B140	Onoan	31:16						SID<10:0>							EXID		EID<1	7:16>	xxxx
0+10	(n = 0-15)	15:0						aa ara ahawr		EID<1	5:0>								xxxx

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	—	—	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	—	—	_	-
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 23-7: C1RXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVF<15:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 23-8: C1TMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
51.24		CANTS<15:8>								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	CANTS<7:0>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				CANTSPR	E<15:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CANTSPF	RE<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (C1CON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks . . 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: C1TMR will be paused when CANCAP = 0.

2: The C1TMR prescaler count will be reset on any write to C1TMR (CANTSPRE will be unaffected).

29.0 INSTRUCTION SET

The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

32.0 50 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices operating at 50 MHz.

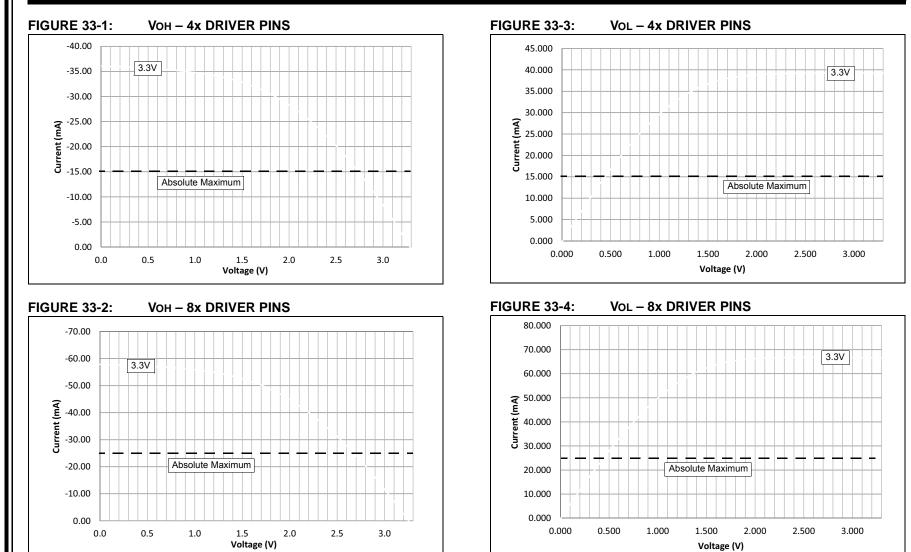
The specifications for 50 MHz are identical to those shown in **Section 31.0 "40 MHz Electrical Characteristics"**, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 50 MHz operation. For example, parameter DC29a in **Section 31.0** "40 MHz Electrical Characteristics", is the up to 40 MHz operation equivalent for MDC29a.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family 50 MHz devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)


Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMIL

© 2014-2016 Microchip Technology Inc

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Pin Count Tape and Reel Flag (if Speed Temperature Range Package		Example: PIC32MX170F512H-50I/PT: General Purpose PIC32, 32-bit RISC MCU, 512 KB program memory, 64-pin, Industrial temperature, TQFP package.
Flash Memory Fan	nily	
Architecture	MX = 32-bit RISC MCU core	
Product Groups	1XX = General Purpose microcontroller family 2XX = USB microcontroller family 5XX = USB and CAN microcontroller family	
Flash Memory Family	F = Flash program memory	
Program Memory Size	064 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB	
Pin Count	H = 64-pin L = 100-pin	
Speed	= 40 MHz (blank, no marking on package) 50 = 50 MHz	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-Temp)	
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise ES = Engineering Sample	.)