

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128ht-50i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	0-PIN TQFP (TOP VIEW)		
	PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L		
			100
Din #	Full Bin Name	Din #	Full Bin Name
FIII #		FIII #	
/1	RPD11/PMA14/RD11	86	VDD
/./		07	
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0
73	RPD0/RD0 SOSCI/RPC13/RC13	87 88	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1
72 73 74	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14	87 88 89	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1
72 73 74 75	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss	87 88 89 90	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0
72 73 74 75 76 77	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2	87 88 89 90 91	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/DA7
72 73 74 75 76 77 78	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3	87 88 89 90 91 92 93	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/PE0
72 73 74 75 76 77 78 79	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/RD12	87 88 89 90 91 92 93 94	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1
72 73 74 75 76 77 78 79 80	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13	87 88 89 90 91 92 93 94 95	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14
72 73 74 75 76 77 78 79 80 81	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4	87 88 89 90 91 92 93 94 95 96	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12
72 73 74 75 76 77 78 79 80 81 82	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5	87 88 89 90 91 92 93 94 95 96 97	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13
73 74 75 76 77 78 79 80 81 82 83	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6	87 88 89 90 91 92 93 94 95 96 97 98	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13 AN20/PMD2/RE2
72 73 74 75 76 77 78 79 80 81 82 83 84	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6 AN43/C3INB/PMD15/RD7	87 88 89 90 91 92 93 94 95 96 97 98 99	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13 AN20/PMD2/RE2 RPE3/CTPLS/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description		
VUSB3V3 (2)	35	55	Р		USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.		
VBUSON ⁽²⁾	11	20	0	_	USB Host and OTG bus power control Output		
D+ ⁽²⁾	37	57	I/O	Analog	USB D+		
D-(2)	36	56	I/O	Analog	USB D-		
USBID ⁽²⁾	33	51	I	ST	USB OTG ID Detect		
PGED1	16	25	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1		
PGEC1	15	24	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1		
PGED2	18	27	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2		
PGEC2	17	26	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2		
PGED3	13	22	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3		
PGEC3	14	23	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3		
CTED1		17	I	ST	CTMU External Edge Input 1		
CTED2		38	I	ST	CTMU External Edge Input 2		
CTED3	18	27	I	ST	CTMU External Edge Input 3		
CTED4	22	33	I	ST	CTMU External Edge Input 4		
CTED5	29	43	I	ST	CTMU External Edge Input 5		
CTED6	30	44	I	ST	CTMU External Edge Input 6		
CTED7		9	I	ST	CTMU External Edge Input 7		
CTED8		92	I	ST	CTMU External Edge Input 8		
CTED9	_	60	I	ST	CTMU External Edge Input 9		
CTED10	21	32	I	ST	CTMU External Edge Input 10		
CTED11	23	34	I	ST	CTMU External Edge Input 11		
CTED12	15	24	I	ST	CTMU External Edge Input 12		
CTED13	14	23		ST	CTMU External Edge Input 13		
C1RX	PPS	PPS	I	ST	Enhanced CAN Receive		
C1TX	PPS	PPS	0	ST	Enhanced CAN Transmit		
Legend:	CMOS = CM	IOS compati	ble inpu	t or output	Analog = Analog input I = Input O = Output		

Legend: CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

P = Power

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer **Note 1:** This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module. 4: This pin is only available on 100-pin devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R	R	R	R	R	R	R	R			
31:24				BMXDRN	ISZ<31:24>						
22.16	R	R	R	R	R	R	R	R			
23:10	BMXDRMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXDRMSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXDR	MSZ<7:0>						

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	_	_	_	—	BMXPUPBA<19:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
15:8		BMXPUPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				BMXPU	IPBA<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n = Value at POR	'1' = Bit is set	"0" = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ROTRI	M<8:1>			
00.10	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	ROTRIM<0>	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	—	_	_	_	_	_

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	-	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHCSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CHCSIZ	<u>/</u> <7:0>					

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	_	_		—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	_	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	15:8 CHCPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
1.0	CHCPTR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_		_	—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U1OTGCON: USB OTG CONTROL REGISTER

Legend:

bit

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

7	DPF	PUL	UP	: D+	Pull-Up	Enable	bit	
	-	D .						

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- to **DMPOLOP:** D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

1 = D+ data line pull-down resistor is enabled
 0 = D+ data line pull-down resistor is disabled

bit 4 **DMPULDWN:** D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0							
31.24	—	—	—	—	—	—	—	—	
22.16	U-0	U-0							
23.10	—	—	—	—	—	—	—	—	
15.0	U-0	U-0							
15.0	—	—	—	—	—	—	—	—	
	R/WC-0, HS	R/WC-0, HS							
7:0	BTSEE	BMYEE					CRC5EF ⁽⁴⁾	DINEE	
	DISEF	DIVIALE	DIVIALLY	BIOEF	DINOLF	GROIDEF	EOFEF ^(3,5)		

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	it
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	_	_	_	_	_		—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾	HEBDET			DDDDCT	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	USBROI	TIOSTEIN"	RESUMENT	FFDROI	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability enabled
- 0 = USB host capability disabled

bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling activated
- 0 = RESUME signaling disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SS			Bits																
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
EA5C	LIPCTOR	31:16	_	-	—	_	-	-	—	_	_	-	-	—	_	_	_	—	0000
17.50	020101	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U2CTS	R<3:0>		0000
FA60	U3RXR	31:16	_			_	_			—	_			—	—	—	—	—	0000
17100	COLOUR	15:0	_			_	_			—	_			—		U3RXI	R<3:0>		0000
FA64	U3CTSR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	0001011	15:0	_	—			—	—	—	—		—	—			U3CTS	R<3:0>		0000
FA68	U4RXR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	•	15:0	—			—	_	—		—	—		—			U4RXI	R<3:0>		0000
FA6C	U4CTSR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	0.0101	15:0	—			—	_	—		—	—		—			U4CTS	R<3:0>		0000
FA70	U5RXR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
		15:0	—			—	_	—		—	—		—			U5RXI	R<3:0>		0000
FA74	U5CTSR	31:16	—			—	_	—		—	—		—		—	—	—	—	0000
	000101	15:0	—			—	_	—		—	—		—			U5CTS	R<3:0>		0000
FA84	SDI1R	31:16	—			—	_	—		—	—		—		—	—	—	—	0000
17.01	obiiit	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI1F	<3:0>		0000
FA88	SS1R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	0011	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SS1R	<3:0>		0000
FA90	SDI2R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	ODIER	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI2F	<3:0>		0000
FAQ4	SS2R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.04	00210	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SS2R	<3:0>		0000
FA9C	SDI3R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	OBIOIR	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI3F	<3:0>		0000
FAAO	SS3R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
1740	0001	15:0	_	_		_	—	_	—	—	_	_	—	_		SS3R	<3:0>		0000
EA A 8	SDIAB	31:16	_	_		_	—	_	—	—	_	_	—	_	_	_	_	_	0000
T AAO	3DI4K	15:0	_			_	_	_	—	—	_			_		SDI4F	<3:0>		0000
EAAC	994D	31:16	—	—			—	—	—	—	—	—	—	—	_	—	—	—	0000
FAAC	334R	15:0	—	_	—	-	—	—	—	—	—	_	—	—		SS4R	<3:0>		0000
EACO	CIPYP	31:16	—	_	—	_	_	_	—	_	_	_	_	—	_	—	—	—	0000
FAUG	UIKAK	15:0			—	_			_	—	_		—			C1RXI	R<3:0>		0000
EADO		31:16	_	—	—	_	_	_	—	_	_	—	—	—	_	—	—	—	0000
FADU	REFULNIK	15:0	_	_	-	_	—	_	—	—	_	_	—	_		REFCL	(IR<3:0>		0000
Legen																			

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

ess		â									Bits								(0
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	—	—	_	—	—	—	—	_	—	—	_	_	—	—	—	_	0000
0000	WDICON	15:0	ON	—	—	—		—	—	—	—		SV	VDTPS<4:()>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:10	_	—	_	_	—	_	_	_				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾				-10.05						
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾	ADDR<13:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ADDR<7:0>											

REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	—	—	FORM<2:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
7:0		SSRC<2:0>		CLRASAM		ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

bit 14

R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
 - Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'
- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)

 - 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)
 - 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing SAMP bit ends sampling and starts conversion
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTE	R 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 8	CTTRIG: Trigger Control bit
	1 = Trigger output is enabled
	0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	•
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	100010
	100001 = Maximum negative change from nominal current
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾
	11 = 100 times base current
	10 = 10 times base current
	01 = Base current level
	00 = 1000 times base current ⁽⁴⁾

- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0
31:24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	—	—	-	-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_		
15:8	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
	USERID<15:8>							
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
7.0	USERID<7:0>							

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 31-34: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Device	Supply						
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5		Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss	_	AVDD	V	(Note 1)
Referen	ce Inputs						
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)
AD06	Vrefl	Reference Voltage Low	AVss		VREFH – 2.0	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0		AVDD	V	(Note 3)
AD08	IREF	Current Drain	_	250	400	μA	ADC operating
AD08a			—	—	3	μA	ADC off
Analog	Input	1			1		
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/2	V	—
AD14	VIN	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	—
AD15	_	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10 \ k\Omega \end{array}$
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-		-	
AD20c	Nr	Resolution		10 data bit	S	bits	—
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD22c	DNL	Differential Non-linearity	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)
AD23c	Gerr	Gain Error	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD24c	EOFF	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V
AD25c	_	Monotonicity		_	—		Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Conditions				
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40		—	ns	_
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	—	_	60	ns	_
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	_	10	ns	_
PS5	Tcs	CS Active Time	Трв + 40		—	ns	—
PS6	TwR	WR Active Time	Трв + 25		_	ns	
PS7	TRD	RD Active Time	Трв + 25		_	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

w

WWW Address	
WWW, On-Line Support	9