

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

etails	
roduct Status	Active
ore Processor	MIPS32® M4K™
ore Size	32-Bit Single-Core
peed	50MHz
onnectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
eripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
umber of I/O	49
rogram Memory Size	128KB (128K x 8)
ogram Memory Type	FLASH
EPROM Size	-
AM Size	16K x 8
oltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
ata Converters	A/D 28x10b
scillator Type	Internal
perating Temperature	-40°C ~ 85°C (TA)
ounting Type	Surface Mount
ackage / Case	64-TQFP
upplier Device Package	64-TQFP (10x10)
urchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128ht-50i-pi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 100-PIN USB DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MX230F128L PIC32MX530F128L PIC32MX250F256L PIC32MX550F256L PIC32MX270F512L PIC32MX570F512L

100

1

Pin#	Full Pin Name
1	AN28/RG15
2	VDD
3	AN22/RPE5/PMD5/RE5
4	AN23/PMD6/RE6
5	AN27/PMD7/RE7
6	AN29/RPC1/RC1
7	AN30/RPC2/RC2
8	AN31/RPC3/RC3
9	RPC4/CTED7/RC4
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6
11	AN17/C1INC/RPG7/PMA4/RG7
12	AN18/C2IND/RPG8/PMA3/RG8
13	MCLR
14	AN19/C2INC/RPG9/PMA2/RG9
15	Vss
16	VDD
17	TMS/CTED1/RA0
18	AN32/RPE8/RE8
19	AN33/RPE9/RE9
20	AN5/C1INA/RPB5/VBuson/RB5
21	AN4/C1INB/RB4
22	PGED3/AN3/C2INA/RPB3/RB3
23	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2
24	PGEC1/AN1/RPB1/CTED12/RB1
25	PGED1/AN0/RPB0/RB0
26	PGEC2/AN6/RPB6/RB6
27	PGED2/AN7/RPB7/CTED3/RB7
28	VREF-/PMA7/RA9
29	VREF+/PMA6/RA10
30	AVDD
31	AVss
32	AN8/RPB8/CTED10/RB8
33	AN9/RPB9/CTED4/RB9
34	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10
35	AN11/PMA12/RB11

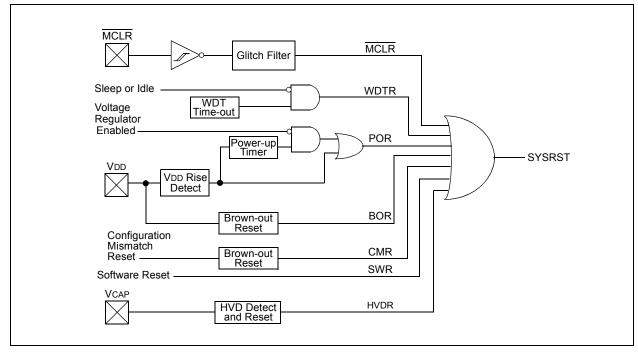
Pin #	Full Pin Name
36	Vss
37	VDD
38	TCK/CTED2/RA1
39	AN34/RPF13/SCK3/RF13
40	AN35/RPF12/RF12
41	AN12/PMA11/RB12
42	AN13/PMA10/RB13
43	AN14/RPB14/CTED5/PMA1/RB14
44	AN15/RPB15/OCFB/CTED6/PMA0/RB15
45	Vss
46	VDD
47	AN36/RPD14/RD14
48	AN37/RPD15/SCK4/RD15
49	RPF4/PMA9/RF4
50	RPF5/PMA8/RF5
51	USBID/RPF3/RF3
52	AN38/RPF2/RF2
53	AN39/RPF8/RF8
54	VBUS
55	VUSB3V3
56	D-
57	D+
58	SCL2/RA2
59	SDA2/RA3
60	TDI/CTED9/RA4
61	TDO/RA5
62	VDD
63	OSC1/CLKI/RC12
64	OSC2/CLKO/RC15
65	Vss
66	RPA14/SCL1/RA14
67	RPA15/SDA1/RA15
68	RPD8/RTCC/RD8
69	RPD9/RD9
70	RPD10/SCK1/PMA15/RD10

Note

- 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions.
- 2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.

7.0 RESETS

Note:


This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · MCLR: Master Clear Reset pin
- · SWR: Software Reset
- · WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- · CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 7-1.

FIGURE 7-1: SYSTEM RESET BLOCK DIAGRAM

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	-	-	_	-	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	-	_	_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	ı	ı	_	ı	-	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_			RDWR		OMACH<2:0>	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 **Unimplemented:** Read as '0' bit 3 **RDWR:** Read/Write Status bit

1 = Last DMA bus access was a read0 = Last DMA bus access was a write

bit 2-0 DMACH<2:0>: DMA Channel bits

These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
31:24	DMAADDR<31:24>												
22.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
23:16	DMAADDR<23:16>												
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8				DMAADDI	R<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0				DMAADD	R<7:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

REGISTER 9-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	_	_	_	_		_	_	_					
22:46	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
23:16	CHAIRQ<7:0> ⁽¹⁾												
15:8	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
13.6				CHSIRQ-	<7:0> ⁽¹⁾								
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN		-	_					

Legend:S = Settable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1)

11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag

•

•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag

00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits(1)

11111111 = Interrupt 255 will initiate a DMA transfer

•

00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

1 = A DMA transfer is aborted when this bit is written to a '1'

0 = This bit always reads '0'

bit 5 PATEN: Channel Pattern Match Abort Enable bit

1 = Abort transfer and clear CHEN on pattern match

0 = Pattern match is disabled

bit 4 SIRQEN: Channel Start IRQ Enable bit

1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

0 = Interrupt number CHSIRQ is ignored and does not start a transfer

bit 3 AIRQEN: Channel Abort IRQ Enable bit

1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs

0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer

bit 2-0 Unimplemented: Read as '0'

Note 1: See Table 5-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 10-3: U10TGSTAT: USB OTG STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	-	-	-	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	-	-	-	-	_	_	_	_
7.0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
7:0	ID	_	LSTATE	_	SESVD	SESEND	_	VBUSVD

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 **ID:** ID Pin State Indicator bit

1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle

0 = A Type-A cable has been plugged into the USB receptacle

bit 6 Unimplemented: Read as '0'

bit 5 LSTATE: Line State Stable Indicator bit

1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms

0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms

bit 4 Unimplemented: Read as '0'

bit 3 SESVD: Session Valid Indicator bit

1 = VBUS voltage is above Session Valid on the A or B device

0 = VBUS voltage is below Session Valid on the A or B device

bit 2 SESEND: B-Device Session End Indicator bit

1 = VBUS voltage is below Session Valid on the B device

0 = VBUS voltage is above Session Valid on the B device

bit 1 **Unimplemented:** Read as '0'

bit 0 VBUSVD: A-Device VBUS Valid Indicator bit

1 = VBUS voltage is above Session Valid on the A device

0 = VBUS voltage is below Session Valid on the A device

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	_	_	-	_	_	_	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	-	-	1	-	-	_	_	_	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
13.6	_	_	-	_	_	_	_	_	
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	
7:0	BTSEF	BTSEF BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF	
	DIOLI	DIVIXLI	DIVIALI	DIOLI ·	DINOLI	ONOTOLI	EOFEF ^(3,5)	TIDEF	

Legend: WC = Write '1' to clear HS = Hardware Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 **BTSEF:** Bit Stuff Error Flag bit

1 = Packet rejected due to bit stuff error

0 = Packet accepted

bit 6 **BMXEF:** Bus Matrix Error Flag bit

1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.

0 = No address error

bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾

1 = USB DMA error condition detected

0 = No DMA error

bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾

1 = Bus turnaround time-out has occurred

0 = No bus turnaround time-out

bit 3 DFN8EF: Data Field Size Error Flag bit

1 = Data field received is not an integral number of bytes

0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

1 = Data packet rejected due to CRC16 error

0 = Data packet accepted

- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

ress)	L .	е								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	_	_		_	_	_	_	_	_	_			_	_	I	_	0000
0000	ANGLLA	15:0	_	_	_	_	_	ANSELA10	ANSELA9		_	_	_	_	_	_	_	_	0060
6010	TRISA	31:16	_	_		_	_	_	_	_	_	_	_		_	_		_	0000
0010	11(10)(15:0	TRISA15	TRISA14	_	_		TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020	PORTA	31:16	_	_	-	_	_	_	_	_	_	_	_	-	_	_	-	_	0000
0020	1 011171	15:0	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_		_	0000
0000	DAIA	15:0	LATA15	LATA14	_	_		LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	_	_	_	_		_	_	_	_	_	_	_	_	_		_	0000
0040	ODON	15:0	ODCA15	ODCA14	_	_		ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	OIII O/I	15:0	CNPUA15	CNPUA14	_	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	0 2	15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0070	011001111	15:0	ON	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6080	CNENA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	SIVEIVA	15:0	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9		CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-10: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										E	Bits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400	ANSELE	31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0400	ANOLLL	15:0	_	-	_	_	_	-	_	_	ANSELE7	ANSELE6	ANSELE5	ANSELE4	_	ANSELE2	_	_	03F4
6410	TRISE	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0410	TINIOL	15:0	_		_	_	_		_		TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
6420	PORTE	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0420	TORTE	15:0	_	-	_	_	_	-	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6440	LATE	31:16	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
0440	LAIL	15:0	_	-	_	_	_	-	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6440	ODCE	31:16	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
0440	ODOL	15:0	_	-	_	_	_	-	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
6450	CNPUE	31:16	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
0430	CIVIOL	15:0	_	-	_	_	_	-	_	_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	0000
6460	CNPDE	31:16	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
0400	ON DL	15:0	_	-	_	_	_	-	_	_	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
6470	CNCONE	31:16	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
0470	CINCOINL	15:0	ON	-	SIDL	_	_	-	_	_	_	_	_	-	_	_	_	_	0000
6480	CNENE	31:16	_	ı	-	_	_	-	-	-	_	_	-	ı	-	_	_	-	0000
0400	CINCINC	15:0	_	ı	-	_	_	-	-	-	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6490	CNSTATE	15:0	_	-	_	_	_		_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 20-4: PMDOUT: PARALLEL PORT OUTPUT DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	_	_	_	_	_	_	_	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	_	_	_	_	_	_	_	_				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.6				DATAOUT	<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DATAOUT<7:0>											

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **DATAOUT<15:0>:** Port Data Output bits

This register is used for Read operations in the Enhanced Parallel Slave mode and Write operations for Dual Buffer Master mode.

In Dual Buffer Master mode, the DUALBUF bit (PMPCON<17>) = 1, a write to the MSB triggers the transaction on the PMP port. When MODE16 = 1, MSB = DATAOUT<15:8>. When MODE16 = 0, MSB = DATAOUT<7:0>.

Note: In Master mode, a read will return the last value written to the register. In Slave mode, a read will return indeterminate results.

REGISTER 20-5: PMDIN: PARALLEL PORT INPUT DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	_	_	_	_	_	_		_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	_	_	_	_	_	_	_			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
13.6				DATAIN<	15:8>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	DATAIN<7:0>										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAIN<15:0>: Port Data Input bits

This register is used for both Parallel Master Port mode and Enhanced Parallel Slave mode.

In Parallel Master mode, a write to the MSB triggers the write transaction on the PMP port. Similarly, a read to the MSB triggers the read transaction on the PMP port.

When MODE16 = 1, MSB = DATAIN<15:8>. When MODE16 = 0, MSB = DATAIN<7:0>.

Note: This register is not used in Dual Buffer Master mode (i.e., DUALBUF bit (PMPCON<17>) = 1).

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit (4)
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - **4:** The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾

11111111 = Alarm will trigger 256 times

•

00000000 =Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_		-	_	-	_	_	
22.46	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONT	H10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY′	10<1:0>		DAY01<3:0>				
7:0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
	_	_	_	_	WDAY01<3:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10s place digits; contains a value of 0 or 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10s place digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

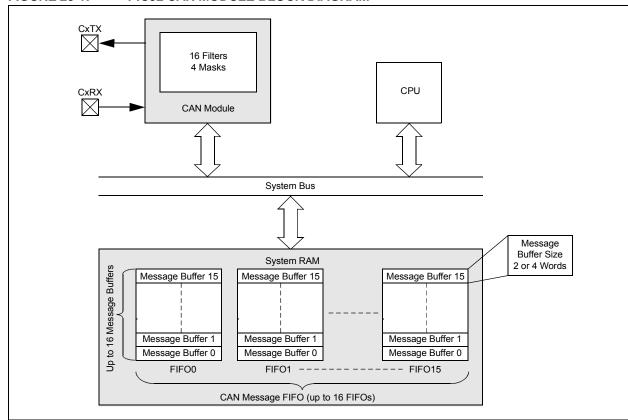
bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1s place digit; contains a value from 0 to 6

23.0 CONTROLLER AREA NETWORK (CAN)

Note:

This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 34.** "**Controller Area Network (CAN)**" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Controller Area Network (CAN) module supports the following key features:

- · Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- · Message Reception and Transmission:
 - 16 message FIFOs
 - Each FIFO can have up to 16 messages for a total of 256 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 16 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet™ addressing support
- · Additional Features:
 - Loopback, Listen All Messages, and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 system bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 23-1 illustrates the general structure of the CAN module.

FIGURE 23-1: PIC32 CAN MODULE BLOCK DIAGRAM

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess										Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
B000	C1CON	31:16	_	_	_	1	ABAT		REQOP<2:0	>	(DPMOD<2:0	>	CANCAP	-	-	_	_	0480
БООО	CICON	15:0	ON	_	SIDLE	_	CANBUSY	_	_	_	_	_	_		D	NCNT<4:0>	•		0000
B010	C1CFG	31:16	_	_	_	_	_	_	_	_	_	WAKFIL	_	_	_	S	EG2PH<2:0	>	0000
D010	01010		SEG2PHTS	SAM		EG1PH<2:0			PRSEG<2:0	>	SJW	<1:0>			BRP<				0000
B020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	_	_	_	_	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
D020	011111	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		_	_	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
Вооо	01120	15:0	_	_	_			FILHIT<4:0	>		_				CODE<6:0>		,		0040
B040	C1TREC	31:16	_	_	_	_	_	_	_	_	_	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
50.0	0111120	15:0		•		TERRO	NT<7:0>					•	•	RERRCN	IT<7:0>		•		0000
B050	C1FSTAT	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
	011 01711	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	B060 C1RXOVF	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
2000	01101011	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	
B070	C1TMR	31:16								CANTS<									0000
		15:0											0000						
B080	C1RXM0	31:16	SID<10:0> — MIDE — EID<17:16> 2									xxxx							
	0 0 0	15:0								EID<1	5:0>								xxxx
B090	C1RXM1	31:16											xxxx						
D000	Onown	15:0		EID<15:0> xxx											xxxx				
B0A0	C1RXM2	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
DUAU	CTIVAIVIZ	15:0	EID<15:0>										xxxx						
B0B0	C1RXM3	31:16				SID<10:0> — MIDE						_	EID<1	7:16>	xxxx				
БОБО	CIRXIVIS	15:0	EID<15:0>										xxxx						
DOCO	C1FLTCON0	31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0> FLTEN2 MSEL2<1:0>			FSEL2<4:0>				0000				
ВОСО	CIFLICONO	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>	FSEL0<4:0>			0000		
DUDU	C1FLTCON1	31:16 FLTEN7 MSEL7<1:0> FS			FSEL7<4:0	SEL7<4:0> FLTEN6 MSEL6<1:0>			FSEL6<4:0>				0000						
БООО	CIFLICONI	15:0	FLTEN5	MSEL	5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>	FSEL4<4:0>				0000	
DUEU	C1FLTCON2	31:16	FLTEN11	MSEL ²	11<1:0>			FSEL11<4:0	SEL11<4:0> FLTEN10 MSEL10<1:0>			FSEL10<4:0>				0000			
POEO	GIFLICONZ	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0	>		FLTEN8	N8 MSEL8<1:0> FSEL8<4:0> 00					0000		
BUEU	C1FLTCON3	31:16	FLTEN15	MSEL1	15<1:0>			FSEL15<4:0	>	-	FLTEN14	MSEL1	14<1:0>		F	SEL14<4:0>	>	-	0000
POLO	O IFLI CONS	15:0	FLTEN13	MSEL1	13<1:0>			FSEL13<4:0	>		FLTEN12	MSEL1	12<1:0>		F	SEL12<4:0>	·		0000
D140	C1RXFn	31:16					·	SID<10:0>			·			-	EXID	_	EID<1	7:16>	xxxx
B140 (n = 0-15)	15:0																	xxxx	

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0			
31.24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	_		_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	_	_	_	_	_		_			
15.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
15:8	USERID<15:8>										
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7:0	USERID<7:0>										

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **FVBUSONIO:** USB VBUS_ON Selection bit

1 = VBUSON pin is controlled by the USB module

0 = VBUSON pin is controlled by the port function

bit 30 FUSBIDIO: USB USBID Selection bit

1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function

bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit

1 = Allow only one reconfiguration

0 = Allow multiple reconfigurations

bit 28 **PMDL1WAY:** Peripheral Module Disable Configuration bit

1 = Allow only one reconfiguration

0 = Allow multiple reconfigurations

bit 27-16 Unimplemented: Read as '0'

bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

28.3 On-Chip Voltage Regulator

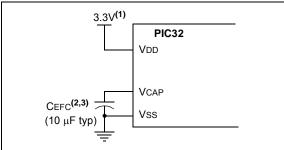
All PIC32MX1XX/2XX/5XX 64/100-pin devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX/5XX 64/100-pin family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 31.1** "DC Characteristics".

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.

28.3.1 HIGH VOLTAGE DETECT (HVD)

The HVD module monitors the core voltage at the VCAP pin. If a voltage above the required level is detected on VCAP, the I/O pins are disabled and the device is held in Reset as long as the HVD condition persists. See parameter HV10 (VHVD) in Table 31-11 in **Section 31.1** "**PC Characteristics**" for more information.


28.3.2 ON-CHIP REGULATOR AND POR

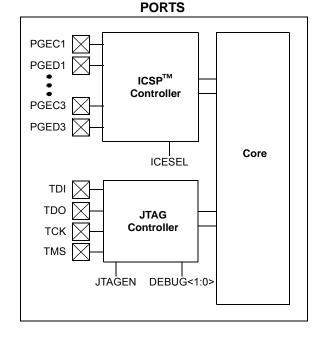
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

28.3.3 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX/5XX 64/100-pin devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 31.1 "DC Characteristics"**.

FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

- Note 1: These are typical operating voltages. Refer to Section 31.1 "DC Characteristics" for the full operating ranges of VDD.
 - 2: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.
 - 3: The typical voltage on the VCAP pin is 1.8V.


28.4 Programming and Diagnostics

PIC32MX1XX/2XX/5XX 64/100-pin devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming™ (ICSP™) interfaces
- · Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules that provide a range of functions to the application developer.

FIGURE 28-2: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp						
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions						
Power-Down Current (IPD) (Notes 1, 5)										
DC40k	33	78	μА	-40°C						
DC40I	49	78	μА	+25°C	Base Power-Down Current					
DC40n	281	450	μА	+85°C	Base Power-Down Current					
DC40m	559	895	μA	+105°C						
Module	Module Differential Current									
DC41e	10	25	μА	3.6V	Watchdog Timer Current: ∆IWDT (Note 3)					
DC42e	29	50	μА	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)					
DC43d	1000	1300	μА	3.6V ADC: ΔΙΑΦΟ (Notes 3,4)						

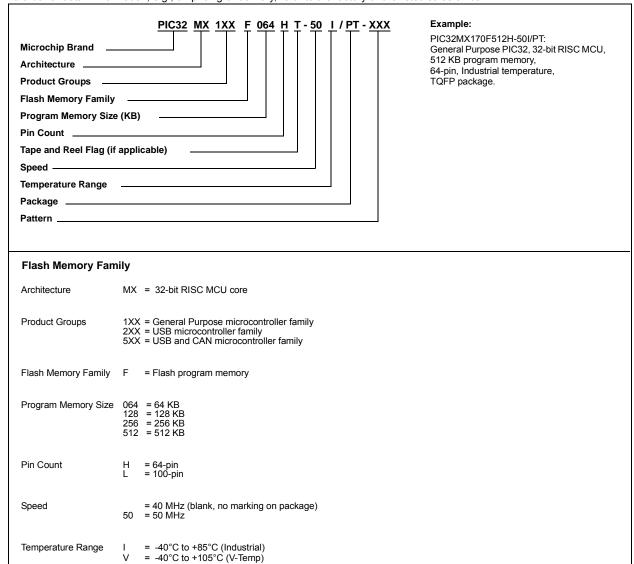
Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- · WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- · RTCC and JTAG are disabled
- **2:** Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

TABLE 31-35: 10-BIT CONVERSION RATE PARAMETERS

AC CHARA	CTERISTIC	S ⁽²⁾	Standard Operating Conditions (see Note 3): 2.5V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp				
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	VDD	ADC Channels Configuration		
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC		
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX SHA ADC ANX OF VREF-		

- **Note 1:** External VREF- and VREF+ pins must be used for correct operation.
 - 2: These parameters are characterized, but not tested in manufacturing.
 - **3:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.


PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)
PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)
PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)
MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)

ES = Engineering Sample

Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)

Package

Pattern