Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 50MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | Peripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | Number of I/O | 81 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 16K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 48x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128lt-50i-pf | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | _ | _ | - | _ | _ | | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | | 15:8 | | | | BMXDUI | PBA<15:8> | | | | | 7.0 | R-0 | 7:0 | | | | BMXDU | PBA<7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA. bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments **Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ. #### REGISTER 5-1: INTCON: INTERRUPT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | - | _ | _ | | 22.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | _ | _ | _ | MVEC | _ | | TPC<2:0> | | | 7:0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7:0 | _ | _ | _ | INT4EP | INT3EP | INT2EP | INT1EP | INT0EP | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-13 Unimplemented: Read as '0' bit 12 MVEC: Multi Vector Configuration bit 1 = Interrupt controller configured for multi vectored mode 0 = Interrupt controller configured for single vectored mode bit 11 Unimplemented: Read as '0' bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer 001 = Interrupts of group priority 1 start the Interrupt Proximity timer 000 = Disables Interrupt Proximity timer bit 7-5 **Unimplemented:** Read as '0' bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 2 **INT2EP:** External Interrupt 2 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 1 **INT1EP:** External Interrupt 1 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 0 INT0EP: External Interrupt 0 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge #### FIGURE 8-2: PIC32MX1XX/2XX/5XX PLL BLOCK DIAGRAM **Note 1:** This frequency range must be satisfied at all times if the PLL is enabled and software is updating the corresponding bits in the OSCON register. #### 8.1 Control Registers #### TABLE 8-1: OSCILLATOR CONFIGURATION REGISTER MAP | ess | | Φ. | | | | | | | | | Bits | | | | | | | | w | |-----------------------------|---------------------------------|-----------|-------|-------|--|-------|---------|-------|------|------|--------|-------|---------------------|------|---------------------|--------|------|------|-----------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Reset | | F000 | OSCCON | 31:16 | _ | _ | PI | | | | | | | | | | x1xx ⁽²⁾ | | | | | | F000 | OSCCON | 15:0 | _ | | COSC<2: | 0> | | | | | | | xxxx ⁽²⁾ | | | | | | | | F010 | OSCTUN | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | F010 | OSCIUN | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | TUT | N<5:0> | | | 0000 | | F000 | DEEOCON | 31:16 | _ | | | | | | | | RODIV< | 14:0> | | | | | | | 0000 | | F020 | REFOCON | 15:0 | ON | _ | _ SIDL OE RSLP _ DIVSWEN ACTIVE ROSEL<3:0> 000 | | | | | | | | 0000 | | | | | | | | F000 | REFOTRIM | 31:16 | | | | ļ | ROTRIM< | 3:0> | | | | _ | _ | _ | _ | _ | _ | _ | 0000 | | F030 | KEFUIKIM | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. lote 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset. 3: This bit is only available on devices with a USB module. #### REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | R/W-0 | 31.24 | | | | DCRCDATA | A<31:24> | | | | | 22:46 | R/W-0 | 23:16 | | | | DCRCDATA | A<23:16> | | | | | 15.0 | R/W-0 | 15:8 | | | | DCRCDAT | A<15:8> | | | | | 7:0 | R/W-0 | 7.0 | | | | DCRCDA | ΓA<7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 DCRCDATA<31:0>: CRC Data Register bits Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read. When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value). When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read. #### REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | R/W-0 | 31.24 | | | | DCRCXOR | <31:24> | | | | | 23:16 | R/W-0 | 23.10 | | | | DCRCXOF | <23:16> | | | | | 45.0 | R/W-0 | 15:8 | | | | DCRCXO | R<15:8> | | | | | 7.0 | R/W-0 | 7:0 | | | | DCRCXO | R<7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode): This register is unused. When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode): - 1 = Enable the XOR input to the Shift register - 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register #### 11.0 I/O PORTS Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 12. "I/O Ports"** (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. The following are the key features of this module: - · Individual output pin open-drain enable or disable - Individual input pin weak pull-up and pull-down - Monitor selective inputs and generate interrupt when change in pin state is detected - · Operation during CPU Sleep and Idle modes - Fast bit manipulation using CLR, SET and INV registers Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port. **FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE Peripheral Module** Peripheral Module Enable Peripheral Output Enable Peripheral Output Data **PIO Module** RD ODC Data Bus ח ODC SYSCLK CK Q ΕN WR ODC. I/O Cell RD TRIS D Q TRIS CK EN Q WR TRIS **Output Multiplexers** I/O Pin Q ΕN WR LAT WR PORT RD LAT RD PORT Q Q Sleep Q CK Q CK SYSCLK Synchronization Peripheral Input Peripheral Input Buffer Leaend: R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details. Note: This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure for any specific port/peripheral combination may be different than shown here. TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED) | SS | | | | | | | | | | Bi | ts | | | | | | | | | |-----------------------------|------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-------|----------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FAFC | U2CTSR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FA5C | 02C15R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | U2CTS | R<3:0> | | 0000 | | FA60 | U3RXR | 31:16 | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | 1 A00 | USINAN | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | U3RX | R<3:0> | | 0000 | | FA64 | U3CTSR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1 A04 | USCISK | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | U3CTS | R<3:0> | | 0000 | | FA68 | U4RXR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1700 | 0410/11 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | U4RX | R<3:0> | | 0000 | | FA6C | U4CTSR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17.00 | 0401010 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | U4CTS | R<3:0> | | 0000 | | FA70 | U5RXR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17170 | COLOUIT | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | U5RX | R<3:0> | | 0000 | | FA74 | U5CTSR | 31:16 | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | 1707 | 0001010 | 15:0 | | _ | | | _ | _ | | _ | | _ | _ | _ | | U5CTS | R<3:0> | 1 | 0000 | | FA84 | SDI1R | 31:16 | | _ | | | _ | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17101 | OBITIC | 15:0 | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | | SDI1F | R<3:0> | | 0000 | | FA88 | SS1R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17100 | OOTIV | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SS1F | R<3:0> | 1 | 0000 | | FA90 | SDI2R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17100 | OBILIT | 15:0 | | _ | | | _ | _ | | _ | | _ | _ | _ | | SDI2F | R<3:0> | 1 | 0000 | | FA94 | SS2R | 31:16 | | _ | | | _ | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17.01 | OOLIK | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SS2F | <3:0> | 1 | 0000 | | FA9C | SDI3R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | | 02.011 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SDI3F | R<3:0> | 1 | 0000 | | FAA0 | SS3R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17010 | COURT | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SS3F | !<3:0> | 1 | 0000 | | FAA8 | SDI4R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 17010 | OBITIK | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SDI4F | R<3:0> | 1 | 0000 | | FAAC | SS4R | 31:16 | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | 1,010 | 004IX | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | SS4F | <3:0> | | 0000 | | FAC8 | C1RXR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1 700 | OHAN | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | C1RX | R<3:0> | | 0000 | | FAD0 | REFCLKIR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | ו אסט | INLI OLININ | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | REFCL | (IR<3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ### REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED) - bit 4 **P:** Stop bit - 1 = Indicates that a Stop bit has been detected last - 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. - bit 3 S: Start bit - 1 = Indicates that a Start (or Repeated Start) bit has been detected last - 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. - bit 2 R_W : Read/Write Information bit (when operating as I^2C slave) - 1 = Read indicates data transfer is output from slave - 0 = Write indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. - bit 1 RBF: Receive Buffer Full Status bit - 1 = Receive complete, I2CxRCV is full - 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. - bit 0 TBF: Transmit Buffer Full Status bit - 1 = Transmit in progress, I2CxTRN is full - 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission. #### 19.1 Control Registers #### TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP | ess (| | a) | | | | | | | | Bi | ts | | | | | | | | s | |-----------------------------|-----------------------|-----------|--------|--------|--------|-------|--------|-------|-------|-------------|---|---------|-------|----------|----------|------|--------|-------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6000 | U1MODE ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0000 | OTWODE | 15:0 | ON | | SIDL | IREN | RTSMD | | UEN | <1:0> | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSE | L<1:0> | STSEL | 0000 | | 6010 | U1STA ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | | _ | ADM_EN | | | | ADDR | R<7:0> | | | | 0000 | | 0010 | OIOIA | 15:0 | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT | URXISI | EL<1:0> | ADDEN | RIDLE | PERR | FERR | OERR | URXDA | FFFF | | 6020 | U1TXREG | 31:16 | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0020 | OTTAINEO | 15:0 | _ | | _ | _ | _ | | _ | TX8 | | | | Transmit | Register | | | | 0000 | | 6030 | U1RXREG | 31:16 | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0030 | OTIVANLO | 15:0 | _ | | _ | _ | _ | | _ | RX8 | | | | Receive | Register | | | | 0000 | | 6040 | U1BRG ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0040 | O I DICO. | 15:0 | | | | | | | Bau | d Rate Gene | | | | | | | 0000 | | | | 6200 | U2MODE ⁽¹⁾ | 31:16 | _ | | _ | _ | _ | _ | _ | _ | 0 | | | | | 0000 | | | | | 0200 | OZIVIODE | 15:0 | ON | | SIDL | IREN | RTSMD | | UEN | <1:0> | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSE | L<1:0> | STSEL | 0000 | | 6210 | U2STA ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | ADM_EN | | | | ADDR | 2<7:0> | | | | 0000 | | 0210 | 02017(| 15:0 | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT | URXISI | EL<1:0> | ADDEN | RIDLE | PERR | FERR | OERR | URXDA | FFFF | | 6220 | U2TXREG | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0220 | OZIMILO | 15:0 | _ | _ | _ | _ | _ | _ | _ | TX8 | | | | Transmit | Register | | | | 0000 | | 6230 | U2RXREG | 31:16 | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0200 | OZIVINEO | 15:0 | _ | _ | _ | _ | _ | _ | _ | RX8 | | | | Receive | Register | | | | 0000 | | 6240 | U2BRG ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0240 | OZDIKO | 15:0 | | | | | | | Bau | d Rate Gene | erator Pres | caler | | | | | | | 0000 | | 6400 | U3MODE ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0400 | COMODE | 15:0 | ON | _ | SIDL | IREN | RTSMD | _ | UEN | <1:0> | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSE | L<1:0> | STSEL | 0000 | | 6410 | U3STA ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | ADM_EN | ADM_EN ADDR<7:0> 00 | | | | | | 0000 | | | | 3410 | 30017 | 15:0 | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT | TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA FE | | | | | | FFFF | | | | 6420 | U3TXREG | 31:16 | _ | | _ | _ | _ | | _ | | | | | | | 0000 | | | | | J-72U | JUINNEG | 15:0 | _ | | _ | _ | _ | | _ | TX8 | | | | Transmit | Register | | | | 0000 | | 6430 | U3RXREG | 31:16 | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0700 | JUINNEG | 15:0 | _ | _ | _ | _ | _ | | _ | RX8 | | | | Receive | Register | | | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. 2: This register is only available on 100-pin devices. | TABLE 19-1: | UART1 THROUGH UART5 REGISTER MAP (| CONTINUED) | |-------------|------------------------------------|------------| |-------------|------------------------------------|------------| | ess (| | Φ | | | | | | | | Bi | ts | | | | | | | | S | |-----------------------------|--------------------------|-----------|--------|--------|--------|-------|--------|-------|-------|--------------------------|-------------|---------|-------|----------|----------|------|--------|-------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6440 | U3BRG ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | | | | | | | Bau | d Rate Gene | erator Pres | caler | | | | | ı | | 0000 | | 6600 | U4MODE ⁽¹⁾ | 31:16 | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | ON | _ | SIDL | IREN | RTSMD | _ | UEN | <1:0> | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSE | L<1:0> | STSEL | 0000 | | 6610 | U4STA ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | ADM_EN | | | | ADDF | - | | T | | 0000 | | 00.0 | 0.0 | 15:0 | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT | URXISI | EL<1:0> | ADDEN | RIDLE | PERR | FERR | OERR | URXDA | FFFF | | 6620 | U4TXREG | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0020 | 01174120 | 15:0 | _ | _ | _ | _ | _ | _ | _ | TX8 Transmit Register 00 | | | | | | 0000 | | | | | 6630 | U4RXREG | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0000 | OHIVINEO | 15:0 | _ | _ | _ | _ | _ | _ | _ | RX8 | | | | Receive | Register | | | | 0000 | | 6640 | U4BRG ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0040 | OFBICO | 15:0 | | | | | | | Bau | d Rate Gen | erator Pres | caler | | | | | | | 0000 | | 6800 | U5MODE ^(1,2) | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0000 | OOWIODL | 15:0 | ON | _ | SIDL | IREN | RTSMD | _ | UEN: | <1:0> | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSE | L<1:0> | STSEL | 0000 | | 6810 | U5STA ^(1,2) | 31:16 | _ | _ | _ | _ | _ | _ | _ | ADM_EN | | | | ADDF | ?<7:0> | | | | 0000 | | 0010 | 000171 | 15:0 | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT | URXISI | EL<1:0> | ADDEN | RIDLE | PERR | FERR | OERR | URXDA | FFFF | | 6820 | U5TXREG ^(1,2) | 31:16 | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0020 | OSTAINLO | 15:0 | _ | _ | _ | _ | _ | _ | | TX8 | | | | Transmit | Register | | | | 0000 | | 6830 | U5RXREG ^(1,2) | 31:16 | _ | _ | _ | - | _ | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0030 | OUNTING " | 15:0 | _ | ı | _ | | _ | | ı | RX8 | | | | Receive | Register | | | | 0000 | | 6840 | U5BRG ^(1,2) | 31:16 | _ | ı | _ | | _ | | ı | _ | _ | _ | _ | _ | _ | | _ | 1 | 0000 | | 0040 | יטאםנטי -י | 15:0 | | | | | | | Bau | d Rate Gene | erator Pres | caler | | | | | | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. 2: This register is only available on 100-pin devices. #### REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED) - bit 5 ABAUD: Auto-Baud Enable bit - 1 = Enable baud rate measurement on the next character requires reception of Sync character (0x55); cleared by hardware upon completion - 0 = Baud rate measurement disabled or completed - bit 4 RXINV: Receive Polarity Inversion bit - 1 = UxRX Idle state is '0' - 0 = UxRX Idle state is '1' - bit 3 BRGH: High Baud Rate Enable bit - 1 = High-Speed mode 4x baud clock enabled - 0 = Standard Speed mode 16x baud clock enabled - bit 2-1 PDSEL<1:0>: Parity and Data Selection bits - 11 = 9-bit data, no parity - 10 = 8-bit data, odd parity - 01 = 8-bit data, even parity - 00 = 8-bit data, no parity - bit 0 STSEL: Stop Selection bit - 1 = 2 Stop bits - 0 = 1 Stop bit - **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. #### REGISTER 23-17: C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15) | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------------|---------------------------| | 24.24 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | 31:24 | _ | _ | _ | _ | - | TXNFULLIE | TXHALFIE | TXEMPTYIE | | 00.40 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 23:16 | _ | _ | _ | _ | RXOVFLIE | RXFULLIE | RXHALFIE | RXNEMPTYIE | | 45.0 | U-0 | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | | 15:8 | _ | _ | _ | _ | _ | TXNFULLIF ⁽¹⁾ | TXHALFIF | TXEMPTYIF ⁽¹⁾ | | 7.0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R-0 | R-0 | R-0 | | 7:0 | _ | _ | 1 | _ | RXOVFLIF | RXFULLIF ⁽¹⁾ | RXHALFIF ⁽¹⁾ | RXNEMPTYIF ⁽¹⁾ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-27 Unimplemented: Read as '0' bit 26 **TXNFULLIE:** Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full bit 25 **TXHALFIE:** Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full bit 24 **TXEMPTYIE:** Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty bit 23-20 Unimplemented: Read as '0' bit 19 RXOVFLIE: Overflow Interrupt Enable bit 1 = Interrupt enabled for overflow event 0 = Interrupt disabled for overflow event bit 18 RXFULLIE: Full Interrupt Enable bit 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full bit 17 RXHALFIE: FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full bit 16 RXNEMPTYIE: Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty bit 15-11 Unimplemented: Read as '0' bit 10 **TXNFULLIF:** Transmit FIFO Not Full Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' **Note 1:** This bit is read-only and reflects the status of the FIFO. #### 24.0 COMPARATOR Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The Analog Comparator module contains three comparators that can be configured in a variety of ways. The following are the key features of this module: - · Selectable inputs available include: - Analog inputs multiplexed with I/O pins - On-chip internal absolute voltage reference (IVREF) - Comparator voltage reference (CVREF) - · Outputs can be inverted - · Selectable interrupt generation A block diagram of the comparator module is provided in Figure 24-1. FIGURE 24-1: COMPARATOR BLOCK DIAGRAM #### 28.0 SPECIAL FEATURES Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS60001114), Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are: - · Flexible device configuration - Watchdog Timer (WDT) - · Joint Test Action Group (JTAG) interface - In-Circuit Serial Programming™ (ICSP™) #### 28.1 Configuration Bits The Configuration bits can be programmed using the following registers to select various device configurations. - DEVCFG0: Device Configuration Word 0 - DEVCFG1: Device Configuration Word 1 - DEVCFG2: Device Configuration Word 2 - DEVCFG3: Device Configuration Word 3 - · CFGCON: Configuration Control Register In addition, the DEVID register (Register 28-6) provides device and revision information. #### FIGURE 31-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) #### FIGURE 31-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) # 32.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters. #### TABLE 32-5: EXTERNAL CLOCK TIMING REQUIREMENTS | AC CHA | RACTERI | STICS | (unless other | rwise state | enditions: 2.3
ed)
-40°C ≤ TA ≤ | | | |---------------|---------|--|---------------|-------------|--|-------|-------------------------------| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | MOS10 | Fosc | External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes) | DC
4 | _ | 50
50 | | EC (Note 2)
ECPLL (Note 1) | Note 1: PLL input requirements: 4 MHz ≤ FPLLIN ≤ 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing. #### TABLE 32-6: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial | | | | | | |--------------------|--------|----------------------------------|--|---------|------|-------|------------|--| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | | MSP10 | TscL | SCKx Output Low Time (Note 1,2) | Tsck/2 | | _ | ns | ı | | | MSP11 | TscH | SCKx Output High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | Note 1: These parameters are characterized, but not tested in manufacturing. #### TABLE 32-7: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial | | | | | | |--------------------|--------|----------------------------------|--|---|---|----|---|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. Typ. Max. Units Conditions | | | | | | | MSP10 | TscL | SCKx Output Low Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | | MSP11 | TscH | SCKx Output High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | **Note 1:** These parameters are characterized, but not tested in manufacturing. ^{2:} This parameter is characterized, but not tested in manufacturing. ^{2:} The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. ^{2:} The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. #### TABLE 32-8: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | |--------------------|----------|---|---|------|------|-------|------------| | Param.
No. | Symbol | Characteristics | Min. | Тур. | Max. | Units | Conditions | | MSP70 | TscL | SCKx Input Low Time (Note 1,2) | Tsck/2 | _ | | ns | | | MSP71 | TscH | SCKx Input High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | MSP51 | TssH2DoZ | SSx ↑ to SDOx Output
High-Impedance (Note 2) | 5 | _ | 25 | ns | _ | **Note 1:** These parameters are characterized, but not tested in manufacturing. #### TABLE 32-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial | | | | | |--------------------|--------|---------------------------------|---|---------|------|-------|------------| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | SP70 | TscL | SCKx Input Low Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | SP71 | TscH | SCKx Input High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | Note 1: These parameters are characterized, but not tested in manufacturing. ^{2:} The minimum clock period for SCKx is 40 ns. ^{2:} The minimum clock period for SCKx is 40 ns. FIGURE 33-5: TYPICAL CTMU TEMPERATURE DIODE FORWARD VOLTAGE 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | | |----------------------------|-------------|----------|------|------|--| | Dimension | MIN | NOM | MAX | | | | Contact Pitch | E | 0.50 BSC | | | | | Optional Center Pad Width | W2 | | | 5.50 | | | Optional Center Pad Length | T2 | | | 5.50 | | | Contact Pad Spacing | C1 | | 8.90 | | | | Contact Pad Spacing | C2 | | 8.90 | | | | Contact Pad Width (X64) | X1 | | | 0.30 | | | Contact Pad Length (X64) | Y1 | | | 0.85 | | | Distance Between Pads | G | 0.20 | | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2154A #### THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. #### CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support