

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

KE013TE	.K 3-10. D	CHACOLL. D						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	-	-	—	—	-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHCSIZ	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHCSIZ	<7:0>			

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—	-	_			—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	—	—	_	—				
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				CHCPTR	<15:8>							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7.0				CHCPTF	R<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess		6									Bi	ts							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16	_	_	_	_	_	_	_		_	—	_	—	_	—	—		0000
5260		15:0			_		—	—	—	—				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	-	_	-	_	_	_	_	_	_	—	—	—	_	-	—		0000
5290		15:0	_	—	_	—	—	—	_	—	—	—	—	—	—		FRMH<2:0>	>	0000
52A0	U1TOK	31:16		—	_	—	—	—	—	—	_	_	_		—		-	—	0000
5270	UTION	15:0	_	—		—	—	—	—	—		PID	<3:0>			EP	><3:0>		0000
52B0	U1SOF	31:16		_	_	_	_	_	_	_	_	—	_	—	_	_	—		0000
52BU	0130F	15:0		_		_	_	_	_	_				CNT<7	' :0>	-	•		0000
52C0	U1BDTP2	31:16	_		_		_	_	_		_	—	_	—	—	_	—		0000
5200	OIBDIF2	15:0	_		_		_	_	_					BDTPTRH	<23:16>				0000
52D0	U1BDTP3	31:16	_		_		_	_	_		_	—	_	—	—	_	—		0000
5200	OIBDIF5	15:0	_		_		_	_	_					BDTPTRU	<31:24>				0000
52E0	U1CNFG1	31:16	_		_		_	_	_		_	—	_	—	—	_	—		0000
52L0	UICNIGI	15:0	_		_		—	—	_		UTEYE	—	_	USBSIDL	LSDEV	_	—	UASUSPND	0000
5300	U1EP0	31:16	_		_		—	—	_		_	—	_	—	—	_	—		0000
5500	UILFU	15:0	_		_		—	—	_		LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	_		_		—	—	_		_	—	_	—	—	_	—		0000
5510	UILFI	15:0	_		_		—	—	_		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	_		_		—	—	—		_	—	—	—	—	_	—		0000
5520	UILFZ	15:0					_	_	_	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	_	—	_	—	—	—	_	—	—	—	—	—	—	—	—	_	0000
0000	01EI 3	15:0		—	_	—	—	—	—	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	_	_	_	_	—	—	—	_	—	—	—	_	—	—	—	_	0000
0040	01214	15:0		—	_	—	—	—	—	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	_	_	_	_	—	—	—	_	—	—	—	_	—	—	—	_	0000
5550	01EI 5	15:0		—	_	—	—	—	—	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5360	U1EP6	31:16	_	—		—	—	—	—	—	—	—	_	_	—	—	—	—	0000
5500	01L10	15:0	-	_	-	—	_	—	—		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5370	U1EP7	31:16	_	—	_	—	—	—	—	—	—	-	_	—	—	—	-	—	0000
5570		15:0	-	—	-	—	_	_	—	—	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5380	U1EP8	31:16	_	—	_	—	—	—	—	—	—	—	_	—	—	—	-	—	0000
5500		15:0	-	_	-	_	—	—	_	—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

DS60001290D-page 108

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_	-			_		-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_	-			_		-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	—	_	-	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7:0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt enabled
 - 0 = ID interrupt disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt enabled
 - 0 = 1 millisecond timer interrupt disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt enabled
 - 0 = Line state interrupt disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt enabled
 - 0 = ACTIVITY interrupt disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt enabled
 - 0 = Session valid interrupt disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt enabled
 - 0 = B-session end interrupt disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt enabled
 - 0 = A-VBUS valid interrupt disabled

		• • • • • • • • • •						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_		—	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	_		—	—	—	—
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	UIALLII			IULLII		00111		DETACHIF ⁽⁶⁾
	•	•						

REGISTER 10-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settal	ble bit
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7		STALLIF: STALL Handshake Interrupt bit
		1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		1 = K-State is observed on the D+ or D- pin for 2.5 μ s
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)
		0 = No Idle condition detected
bit 3		TRNIF: Token Processing Complete Interrupt bit ⁽³⁾
		 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information 0 = Processing of current token not complete
h:+ 0		
bit 2		SOFIF: SOF Token Interrupt bit 1 = SOF token received by the peripheral or the SOF threshold reached by the host
		0 = SOF token was not received nor threshold reached
bit 1		UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
DICT		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
2.00		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1.	This bit is valid only if the HOSTEN bit is set (see Register 10-11), there is no activity on the USB for
noto	••	2.5μ s, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

TABLE 11-9: PORTE REGISTER MAP FOR 100-PIN DEVICES ONLY

ess										E	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400	ANSELE	31:16	_	_	_		_	_	—	-		_	—	_	—	—	—	_	0000
0400	ANOLLL	15:0	_	_	—	_	_	_	ANSELE9	ANSELE8	ANSELE7	ANSELE6	ANSELE5	ANSELE4	—	ANSELE2	ANSELE1	ANSELE0	03F7
6410	TRISE	31:16	_	—	_	—	_	_	_	_	_	_		_	—	_	—	—	0000
0410	INICE	15:0	_	_	—	_	_	_	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
6420	PORTE	31:16	—	—	—	—	—	_	—	_	_				—	—	—	—	0000
0420	TORTE	15:0	—	—	—	—	—	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6440	LATE	31:16	—	—	—	—	—		—	_							—	—	0000
0440	L/ (1 L	15:0	—	—	—	—	—		LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6440	ODCE	31:16	—	—	—	—	—		—	_							—	—	0000
0440	ODOL	15:0	—	—	—	—	—		ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
6450	CNPUE	31:16	—	—	—	—	—		—	_							—	—	0000
0100		15:0	—	—	—	—	—	—	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	0000
6460	CNPDE	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
0100	ON DE	15:0	—	—	—	—	—	—	CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
6470	CNCONE	31:16	—	—	—	—	—	—	—	—	—	_		_	—	—	—	—	0000
0110	ONCOME	15:0	ON	—	SIDL	—	—	—	—	—	—	_		_	—	—	—	—	0000
6480	CNENE	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
0400	ONLINE	15:0	—	—	—	—	—		CNIEE9	CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	—	—	—	—	—	_	—	—	_	_		_			—	—	0000
6490	CNSTATE	15:0	—	—	—	—	—	-	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—	—	_	-	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	_	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾				AUDMONO ^(1,2)		AUDMOD)<1:0>(1,2)

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

ı'
ļ

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Read as '0'

- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit 1 = Frame Error overflow generates error events 0 = Frame Error does not generate error events bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit 1 = Receive overflow generates error events 0 = Receive overflow does not generate error events bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit 1 = Transmit Underrun Generates Error Events 0 = Transmit Underrun Does Not Generates Error Events bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions) 1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data 0 = A ROV is a critical error which stop SPI operation bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions) 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty 0 = A TUR is a critical error which stop SPI operation AUDEN: Enable Audio CODEC Support bit⁽¹⁾ bit 7 1 = Audio protocol enabled 0 = Audio protocol disabled bit 6-5 Unimplemented: Read as '0' AUDMONO: Transmit Audio Data Format bit^(1,2) bit 3 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo bit 2 Unimplemented: Read as '0' AUDMOD<1:0>: Audio Protocol Mode bit^(1,2) bit 1-0 11 = PCM/DSP mode 10 = Right Justified mode 01 = Left Justified mode $00 = I^2 S \mod I$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

18.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard. Figure 18-1 illustrates the l^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_			_	_	-	_			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	-	-	_	_			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RCS2 ⁽¹⁾	RCS1 ⁽³⁾									
RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾	RADDR<13:8>								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RADDR<7:0>										
	31/23/15/7 U-0 U-0 RW-0 RCS2 ⁽¹⁾ RADDR15 ⁽²⁾	31/23/15/7 30/22/14/6 U-0 U-0 — — U-0 U-0 U-0 U-0 RW-0 RW-0 RCS2 ⁽¹⁾ RCS1 ⁽³⁾ RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾	31/23/15/7 30/22/14/6 29/21/13/5 U-0 U-0 U-0 — — — U-0 U-0 U-0 U-0 U-0 U-0 N-0 U-0 U-0 RW-0 RW-0 RW-0 RCS2 ⁽¹⁾ RCS1 ⁽³⁾	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 M-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 M-0 U-0 U-0 U-0 U-0 U-0 N-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0			

REGISTER 20-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:

9						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15	RCS2:	Chin	Select 2	bit(1)
	RUSZ:	Chip	Select Z	DIC

- 1 = Chip Select 2 is active
- 0 = Chip Select 2 is inactive (RADDR15 function is selected)
- bit 15 RADDR<15>: Target Address bit 15⁽²⁾
- bit 14 RCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive (RADDR14 function is selected)
- bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 RADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - 4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	—	_	—	—	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	-	—	—	-	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				RDATAIN<	15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RDATAIN<	<7:0>			

REGISTER 20-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **RDATAIN<15:0>:** Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 20-5) is used for reads instead of PMRDIN.

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		0								Bi	ts					ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0												
9100	ADC1BUF9	ADC Result Word 9 (ADC1BUF9<31:0>)								0000						
9110	ADC1BUFA	31:16 15:0		ADC Result Word A (ADC1BUFA<31:0>)							0000 0000					
9120	ADC1BUFB	31:16 15:0							ADC Res	ult Word B	(ADC1BUF	B<31:0>)				0000 0000
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)				0000
9140	ADC1BUFD	31:16 15:0		ADC Result Word D (ADC1BUFD<31:0>)							0000 0000					
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)							0000 0000					
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)				0000 0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER (CONTINUED)

```
bit 21-16 CH0SA<5:0>: Positive Input Select bits for Sample A Multiplexer Setting
            For 64-pin devices:
            011110 = Channel 0 positive input is Open<sup>(1)</sup>
            011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            011100 = Channel 0 positive input is IVREF<sup>(3)</sup>
            011011 = Channel 0 positive input is AN27
            000001 = Channel 0 positive input is AN1
            000000 = Channel 0 positive input is AN0
            For 100-pin devices:
            110010 = Channel 0 positive input is Open<sup>(1)</sup>
            110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            110000 = Channel 0 positive input is IVREF<sup>(3)</sup>
            101111 = Channel 0 positive input is AN47
            0000001 = Channel 0 positive input is AN1
            0000000 = Channel 0 positive input is AN0
bit 15-0
            Unimplemented: Read as '0'
```

- Note 1: This selection is only used with CTMU capacitive and time measurement.
 - 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
 - 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 20-16 FSEL6<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN5: Filter 17 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL4<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
R	R	R	R	R	R	R	R	
	VER<	:3:0> ⁽¹⁾			DEVID<27	7:24> ⁽¹⁾		
R	R	R	R	R	R	R	R	
	DEVID<23:16> ⁽¹⁾							
R	R	R	R	R	R	R	R	
			DEVID<	15:8> ⁽¹⁾				
R	R	R	R	R	R	R	R	
			DEVID<	7:0>(1)				
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R R R R R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ VER<	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R	

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

31.0 40 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 32.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31 SP30** SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

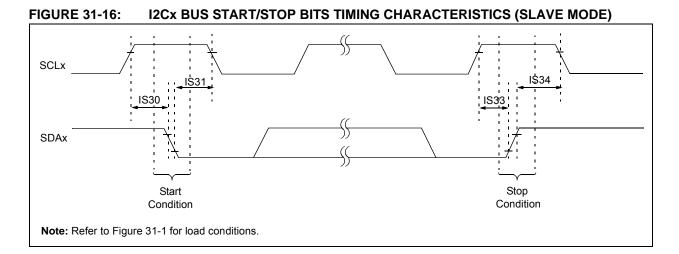
AC CHA	RACTERIST	TICS	(unless	d Operating otherwise ng temperati	stated) ure -4	0°C ≤ T⁄	Dons: 2.3V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions					
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	—	_	ns	_					
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_					
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32					
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	-	ns	See parameter DO31					
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	-	ns	See parameter DO32					
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31					
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V					
	TscL2doV	SCKx Edge	_	—	20	ns	VDD < 2.7V					
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_					
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	_					

Note 1: These parameters are characterized, but not tested in manufacturing.

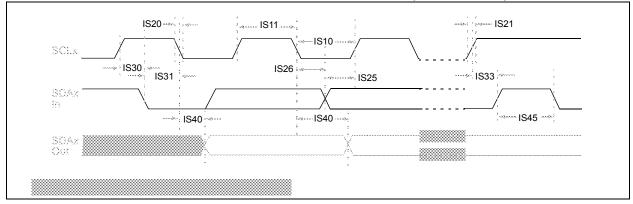
2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


TABLE 31-32:	I2Cx BUS DATA	TIMING REQUIREMENTS	(MASTER MODE)	(CONTINUED)
			((•••••••••

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions
IM40 TAA:SCL	Output Valid from Clock	100 kHz mode	—	3500	ns	—	
		400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—
IM45 TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the bus must be free before a new transmission can start	
		400 kHz mode	1.3	—	μS		
		1 MHz mode (Note 2)	0.5	—	μS		
IM50	Св	Bus Capacitive Loading		—	400	pF	—
IM51	Tpgd	Pulse Gobbler Delay		52	312	ns	See Note 3


Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

AC CHARACTERISTICS ⁽²⁾			$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$		
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF- ANX OF VREF- ANX OF VREF-

TABLE 31-35: 10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support