

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

				`	,							
	Pin N	umber										
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description							
AN36	-	47	I	Analog								
AN37	_	48	I	Analog								
AN38	_	52	I	Analog								
AN39	_	53	I	Analog								
AN40	_	79	I	Analog								
AN41	_	80	I	Analog								
AN42	_	83	I	Analog	Analog input channels.							
AN43	_	84	I	Analog								
AN44	_	87	I	Analog								
AN45	_	88	I	Analog								
AN46	_	93	I	Analog								
AN47	_	94	I	Analog								
CLKI	39	63	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.							
CLKO	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.							
OSC1	39	63	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.							
OSC2	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.							
SOSCI	47	73	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.							
SOSCO	48	74	0	—	32.768 kHz low-power oscillator crystal output.							
IC1	PPS	PPS	I	ST								
IC2	PPS	PPS	Ι	ST								
IC3	PPS	PPS	I	ST	Capture Input 1-5							
IC4	PPS	PPS	I	ST								
IC5	PPS	PPS	I	ST								
OC1	PPS	PPS	0	ST	Output Compare Output 1							
OC2	PPS	PPS	0	ST	Output Compare Output 2							
OC3	PPS	PPS	0	ST	Output Compare Output 3							
OC4	PPS	PPS	0	ST	Output Compare Output 4							
OC5	PPS	PPS	0	ST	Output Compare Output 5							
OCFA	PPS	PPS	I	ST	Output Compare Fault A Input							
OCFB	30	44	I	ST	Output Compare Fault B Input							
Legend:	CMOS = CN	IOS compat	ible inp	ut or output	Analog = Analog input I = Input O = Output							

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = P

P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

RECOMMENDED

FIGURE 2-1:

2: Aluminum or electrolytic capacitors should not be used. ESR \leq 3 Ω from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFc capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "40 MHz Electrical Characteristics"** for additional information on CEFc specifications.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

TABLE 4-1: SFR MEMORY MAP

Derinheral	Virtual Address							
Peripheral	Base	Offset Start						
Interrupt Controller		0x1000						
Bus Matrix		0x2000						
DMA	0.0000	0x3000						
USB	UXBE88	0x5000						
PORTA-PORTG		0x6000						
CAN1		0xB000						
Watchdog Timer		0x0000						
RTCC		0x0200						
Timer1-Timer5		0x0600						
IC1-IC5		0x2000						
OC1-OC5		0x3000						
I2C1-I2C2		0x5000						
SPI1-SPI4		0x5800						
UART1-UART5		0x6000						
PMP	UXDFOU	0x7000						
ADC1		0x9000						
DAC		0x9800						
Comparator 1, 2, 3		0xA000						
Oscillator		0xF000						
Device and Revision ID		0xF200						
Flash Controller		0xF400						
PPS		0xFA00						
Configuration	0xBFC0	0x0BF0						

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0								
31:24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0								
				NVMKE	Y<31:24>											
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0								
23:10		NVMKEY<23:16>														
15.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0								
15:8	NVMKEY<15:8>															
7.0	W-0	W-0	W-0 W-0 W-0 W-0			W-0	W-0	W-0								
7:0				NVMK	EY<7:0>											

REGISTER 6-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 6-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit Bit Bit 29/21/13/5 28/20/12/4 27/19/11/		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0								
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
31:24		NVMADDR<31:24>														
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
23.10	NVMADDR<23:16>															
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
15:8	NVMADDR<15:8>															
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
7:0				NVMA	DDR<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

The following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 9-1: DMA BLOCK DIAGRAM

Bit Range	Bit Bit 31/23/15/7 30/22/14/		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—		_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	—	—	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
Dit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2) 0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
© 2014-201	16 Microchin Technology Inc. Preliminary

11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

The following are the key features of this module:

- · Individual output pin open-drain enable or disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt
 when change in pin state is detected
- Operation during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

11.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 11-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

11.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

11.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

11.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 11-7: PORTD REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		ē								Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300		31:16	—	_	—	—	-		—	—	-	-	—	_	—	—	-	-	0000
0000	ANOLLD	15:0	ANSELD15	ANSELD14	ANSELD13	ANSELD12				—	ANSELD7	ANSELD6	—	_	ANSELD3	ANSELD2	ANSELD1	_	FOCE
6310	TRISD	31:16	—	—	_	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0010	ITTIOD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
5320	PORTD	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
0020		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	I ATD	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
	25	15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
00.0	0000	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
6350	CNPUD	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
	0111 015	15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
6360	CNPDD	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
	0111 22	15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
6370	CNCOND	31:16	—	—	—	—	_	_	_	—	_	_	—	—	—	—	—	—	0000
		15:0	ON	—	SIDL	—	_	_	_	—	_	_	—	—	—	—	—	—	0000
6380	CNEND	31:16	—	—	—	—	—	—	_	—	_	_	—	—	_	_	—	—	0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
		31:16	—			_	—	—	_	—	_	_	_	_	_	—	—	—	0000
6390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB38	RPA14R	31:16		—	_	—	_	—	_	—	—	—	_	—	—	—			0000
		15:0	—	—		—	-	—	-	—	—	—	—	—		RPA14	<3:0>		0000
FB3C	FB3C RPA15R	31:16		_				_		_				_		-	—	_	0000
		15:0	_	_				_		_			_	_		RPA1:	o<3:0>		0000
FB40	RPB0R	31:16	_	_				_		_			_	_	_		-		0000
		15:0	_	_						_			_			RPB0	<3:0>		0000
FB44	RPB1R	31:16	_	_						_			_		_	-	-	_	0000
		15:0	_					_		_						RPB1	<3:0>		0000
FB48	RPB2R	31:10	_	_		_	_	_	_	_	_	_	_	_	_	-		-	0000
		15:0	_	_		_	_	_	_	_	_	_	_	_		RPB2	<3:0>		0000
FB4C	RPB3R	31:10	_	_		_	_	_	_	_	_	_	_	_	_	-		-	0000
		15:0	_	_		_	_	_	_	_	_	_	_	_		RPB3	<3:0>		0000
FB54	RPB5R	31.10						_							_			_	0000
		10.0														RPB0	<3.0>		0000
FB58	RPB6R	31.10													_		-2:0>	_	0000
		21.16		_				_								RF DU	<3.0>		0000
FB5C	RPB7R	31.10													_		-2:0>	_	0000
		31.16		_				_								RFD/	<3.0>		0000
FB60	RPB8R	15.0																	0000
		31.16														INF DO	<3.0>		0000
FB64	RPB9R	15.0														RPB0	<3·0>		0000
		31.16															-0.0-		0000
FB68	RPB10R	15.0							_							RPB1()<3.0>		0000
		31.16										_				_			0000
FB78	RPB14R	15.0														RPB14	1<3:0>		0000
		31.16													_	_			0000
FB7C	RPB15R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB1	5<3:0>		0000
		31:16	_		_		_		_				_			_	_		0000
FB84	RPC1R	15:0	_	_	-	_	-	_	-	_	_	_	_	_		RPC1	<3:0>		0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

DS60001290D-page 153

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
	—	—	—	RXBUFELM<4:0>						
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23:10	—	—	—	TXBUFELM<4:0>						
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8	—	_	—	FRMERR	SPIBUSY	—	—	SPITUR		
7:0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF		

Legend:	C = Clearable bit	HS = Set in hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

NOTES:

20.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PMP is a parallel 8-bit or 16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are the key features of the PMP module:

- 8-bit,16-bit interface
- · Up to 16 programmable address lines
- · Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Selectable polarity
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
- · Read and Write 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Freeze option for in-circuit debugging

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

© 2014-2016 Microchip Technology Inc.

REGISTER 23-16: C1FIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	-	—	—	—	—	
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	—	—	—	FSIZE<4:0>(1)					
15.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0	
15.0	—	FRESET	UINC	DONLY ⁽¹⁾	—	—	—	—	
7:0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16	FSIZE<4:0>: FIFO Size bits ⁽¹⁾
	11111 = Reserved
	•
	10000 = Reserved
	•
	• 00000 = FIFO is 1 message deep
bit 15	Unimplemented: Read as '0'
bit 14	FRESET: FIFO Reset bits
	 1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action. 0 = No effect
bit 13	UINC: Increment Head/Tail bit
	TXEN = 1: (FIFO configured as a Transmit FIFO)
	When this bit is set the FIFO head will increment by a single message
	TXEN = 0: (FIFO configured as a Receive FIFO)
	When this bit is set the FIFO tail will increment by a single message
bit 12	DONLY: Store Message Data Only bit ⁽¹⁾
	TXEN = 1: (FIFO configured as a Transmit FIFO)
	This bit is not used and has no effect. TXEN = 0; (EEC) configuration of the Deposition EEC()
	1 = Only data bytes will be stored in the EIEO
	0 = Full message is stored, including identifier
bit 11-8	Unimplemented: Read as '0'
Note 1:	These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (C1CON<23:21>) = 100).

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- 3: This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0		
	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	—	—	-	-		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	—	—	_				
15.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
10.0	USERID<15:8>									
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
				USERID<	7:0>					

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Conditions					
DO50	Cosco	OSC2 pin	_	_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1	
DO50a	Csosc	SOSCI/SOSCO pins	_	33		pF	Epson P/N: MC-306 32.7680K- A0:ROHS	
DO56	Сю	All I/O pins and OSC2	_	_	50	pF	EC mode	
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C mode	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Param. No. Symbol Characteris			Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Time		_	5	15	ns	Vdd < 2.5V
				_	5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Time		—	5	15	ns	VDD < 2.5V
				_	5	10	ns	Vdd > 2.5V
DI35	TINP	INTx Pin High or Low Time		10	_	_	ns	_
DI40	Trbp	CNx High or Low Ti	me (input)	2	_	_	TSYSCLK	_

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

(8) – One TAD for end of conversion.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв		_	_	
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	—	—	_	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—	—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_	
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns		
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns	_	

TABLE 31-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

