

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f128lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.9.2 5V TOLERANT INPUT PINS

The internal high side diode on 5V tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-7. Voltages on these pins, if VDD < 2.3V, should not exceed roughly 3.2V relative to Vss of the PIC32 device. Voltage of 3.6V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability. If a remotely powered "digital-only" signal can be guaranteed to always be \leq 3.2V relative to Vss on the PIC32 device side, a 5V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than Vss - 0.3V.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX1XX/2XX/5XX 64/100-pin microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX1XX/2XX/5XX 64/100-pin devices to execute from data memory.

The key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1) mode address space
- Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit

4.1 Memory Layout

PIC32MX1XX/2XX/5XX 64/100-pin microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX1XX/2XX/5XX 64/ 100-pin devices are illustrated in Figure 4-1 through Figure 4-4.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				NVMDA	TA<31:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10				NVMDA	TA<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				NVMDA	ATA<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				NVMD	ATA<7:0>			

REGISTER 6-4: NVMDATA: FLASH PROGRAM DATA REGISTER

I edend.

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

NVMSRCADDR: SOURCE DATA ADDRESS REGISTER **REGISTER 6-5:**

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				NVMSRCA	DDR<31:24>	•		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10				NVMSRCA	DDR<23:16>	•		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				NVMSRC/	ADDR<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				NVMSRC	ADDR<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess		6									Bit	s							
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5300		31:16	_	—	—	—	—	—	-	-	—		—	—	—		—	_	0000
5550	UIEI 9	15:0	_	—	_	—	_	_	_	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340		31:16	_	—	—	—	—	—	_	_	_	_	_		_	_	—		0000
5570	UTEL 10	15:0	_	_	_	_	_	_	-	-	_	-	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53R0		31:16	_	_	_	_	_	_	-	-	_	-	—	—	_	-	—	—	0000
5560	OILFII	15:0		_	_	_	_	_			_		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5300		31:16		_	_	_	_	_			_		_	—	_		—	—	0000
5500	UILF 12	15:0		_	_	_	_	_			_		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5300		31:16		_	_	_	_	_			_		_	—	_		—	—	0000
3300	UILF 13	15:0		_	_	_	_	_			_		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	-	_	_	_	_	_			-		-	_			_	—	0000
53E0	UTEP14	15:0	_						_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5250		31:16	_		_		_	_	_	_	_	_	_	_	—	—	_	—	0000
5350	UIEPIS	15:0	_						_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_		_	—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	-	—	—	—
7:0	R/W-0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U1OTGCON: USB OTG CONTROL REGISTER

Legend:

bit

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

7	DPF	PUL	UP	: D+	Pull-Up	Enable	bit	
	-	D .						

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- to **DMPOLOP:** D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

1 = D+ data line pull-down resistor is enabled
 0 = D+ data line pull-down resistor is disabled

bit 4 **DMPULDWN:** D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

11.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin, regardless of the output function including PPS remapped output functions to act as an open-drain output. The only exception is the l^2C pins that are open drain by default.

The open-drain feature allows the presence of outputs higher than V_{DD} (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. The ANSELx register bit, when cleared, disables the corresponding digital input buffer pin(s).

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module. The TRISx bits only control the corresponding digital output buffer pin(s).

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level; i.e., when ANSELx = 1; TRISx = x).

Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP.

11.1.4 INPUT CHANGE NOTIFICATION

The input Change Notification (CN) function of the I/O ports allows the PIC32MX1XX/2XX/5XX 64/100-pin devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

11.1.5 INTERNALLY SELECTABLE PULL-UPS AND PULL-DOWNS

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it, which are independent of any other I/O pin functionality (i.e., PPS, Open Drain, or CN). The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output. They should also be disabled on 5V tolerant pins when the pin voltage can exceed VDD.

An additional control register (CNCONx) is shown in Register 11-3.

11.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

ess)		e								Bi	ts								
Virtual Addi (BF88_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000		31:16	—	_	—	—	_	—	—	—	—	_	—	—	_	—	—	—	0000
0000	ANSELA	15:0	_	_	_	_		ANSELA10	ANSELA9	—	_		—	_		-	—	_	0060
6010	TRISA	31:16	—	_	_	—	_	_	—	_	—	_	—	_	_	_	—	_	0000
0010	INIOA	15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020	PORTA	31:16	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	_	0000
0020		15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	L/(//(15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0040	000/1	15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	CNPUA15	CNPUA14	—	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	—	—	—	_	_	_	—	_	—	_	—		_	—	—		0000
	on bri	15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	_	_	—		_	—	—	—	_	—	_	_		_	_	0000
		15:0	ON	_	SIDL	—		_	—	—	—	_	—	_	_		_	_	0000
6080	CNENA	31:16	—	_	_	—		_	—	—		—	—	_	—	—	_	_	0000
		15:0	CNIEA15	CNIEA14	_	—		CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	—	—	—	_		—	-	_	—	_	—	_	_	_	—	_	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		•								Bits	6								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	—	—	—	—	_	-	—	_	-	—	_	—	-	—	-	—	0000
0000	ANOLLO	15:0	ANSELG15	—	—		—		ANSELG9	ANSELG8	ANSELG7	ANSELG6	_	_		—	_	—	83C0
6610	TRISG	31:16	—	—	—	—	—	—	—	-	—	—	—	_	—	—	—	—	0000
0010	11400	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16	—	—	—	—	—	_	—	_	—	—	—	_	-	—	-	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	_	RG9	RG8	RG7	RG6	—	_	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	LATG15	LATG14	LATG13	LATG12	—	_	LATG9	LATG8	LATG7	LATG6	_	—	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	ODCG3	ODCG2	ODCG1	ODCG0	0000
6650	CNPUG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	—	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
6660	CNPDG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	—	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
6670	CNCONG	31:16	—	—	—		—		—	_	_	—	—	_		—	_	—	0000
		15:0	ON	—	SIDL		—		—	_	_	—	—	_		—	_	—	0000
6680	CNENG	31:16	—		—	—	—	_	_		—	—	_	—	—	—	—	—	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	—	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	—	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
		31:16	—	—	—		—		—	—	—	—	_	_	—	—	—	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	—	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

ess		â									Bits								(0
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	—	—	_	—	—	—	—	_	—	_	_	_	—	—	—	_	0000
0000	WDICON	15:0	ON	—	—	—		—	—	—	—		SV	VDTPS<4:()>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 15-1: ICXCON: INPUT CAPTURE 'x' CONTROL REGISTER ('x' = 1 THROUGH 5)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	_	—
02:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	—	—	_	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	_	—	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Bit Value at POR: ('0', '1', x = unkr	iown)	P = Programmable bit	r = Reserved bit

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	 1 = Module enabled 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	 1 = Halt in CPU Idle mode 0 = Continue to operate in CPU Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	 1 = Capture rising edge first 0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	0 = Timer3 is the counter source for capture1 = Timer2 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	00 = Interrupt on every second capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

© 2014-2016 Microchip Technology Inc.

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾
 - 1111 = Wait of 16 Трв •
 - • 0001 = Wait of 2 ТРВ
 - 0000 = Wait of 1 TPB (default)

bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB
- 00 = Wait of 1 Трв (default)

For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	-	—	—	—	—	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	_	—	—	—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	PTEN<1	5:14> ⁽¹⁾			PTEN	<13:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0			PTEN	<7:2>			PTEN<1:0> ⁽²⁾		

REGISTER 20-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess										Bit	s								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D 000	01001	31:16		_	_	_	ABAT		REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	CICON	15:0	ON	_	SIDLE	_	CANBUSY	_	—	_	—	_			D	NCNT<4:0>			0000
P010	CICEC	31:16	_	WAKFIL SEG2PH<2:0>									0000						
BUIU	CICEG	15:0	SEG2PHTS	G2PHTS SAM SEG1PH<2:0> PRSEG<2:0> SJW<1:0>							BRP<	5:0>			0000				
B020	CUNT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	-	-	—	—	_	—	MODIE	CTMRIE	RBIE	TBIE	0000
B020	CTINT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		—	_	—		_		MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16					_	_	—		—					_	_	—	0000
0000	011/20	15:0	—	—	—			FILHIT<4:0	>		—		-	1	CODE<6:0>		-		0040
B040	C1TREC	31:16	—	—	—	—	—	_	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
Bollo	office	15:0				TERRC	NT<7:0>		•					RERRCN	VT<7:0>				0000
B050	C1ESTAT	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
8000	0110111	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	C1RXOVE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
8000	01101011	15:0	10 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF2							RXOVF1	RXOVF0	0000							
B070	C1TMR	31:16								CANTS<	:15:0>								0000
20.0		15:0							CA	NTSPRE<15	:0>				-		1	l	0000
B080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
8000	0 II 0 III 0	15:0								EID<1	5:0>						-		XXXX
BUOU	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
D000	Onotim	15:0								EID<1	5:0>								xxxx
POAD	C1PVM2	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
BUAU	CTRAIVIZ	15:0								EID<1	5:0>								xxxx
DUDU		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
DUDU	CTRAINS	15:0								EID<1	5:0>								xxxx
DOCO		31:16	FLTEN3	MSEL	.3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
DUCU	CIFLICONU	15:0	ID FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0>									0000							
PODO		31:16	FLTEN7	FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 000															
PODO	CIFLICONI	15:0	FLTEN5	TEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000															
DOLO		31:16	FLTEN11	FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000															
DUEU	C IFLI CON2	15:0	FLTEN9	MSEL	.9<1:0>			FSEL9<4:0	>		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000
DUEU		31:16	FLTEN15	MSEL ²	15<1:0>			FSEL15<4:0)>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>			0000
DUFU	GIFLICONS	15:0	FLTEN13	MSEL	13<1:0>			FSEL13<4:0)>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>			0000
D140	C1RXFn	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx
D140	(n = 0-15)	15:0		EID<15:0> xxx:															

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	—	—	—	—	—	—
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	CVROE	CVRR	CVRSS		CVR	<3:0>	

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled
 - Setting this bit does not affect other bits in the register.
 - 0 = Module is disabled and does not consume current
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 **CVRR:** CVREF Range Selection bit
 - 1 = 0 to 0.625 CVRSRC, with CVRSRC/24 step size
 - $_{\rm 0}$ = 0.25 CVRsRc to 0.719 CVRsRc, with CVRsRc/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS
- bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits
 - $\frac{\text{When CVRR} = 1:}{\text{CVREF} = (\text{CVR}<3:0>/24) \bullet (\text{CVRSRC})}$ $\frac{\text{When CVRR} = 0:}{\text{CVREF} = 1/4 \bullet (\text{CVRSRC}) + (\text{CVR}<3:0>/32) \bullet (\text{CVRSRC})}$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

TABLE 27-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		0								Bit	s								(1)
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F040		31:16	_	_	_	—	_	_	_	_	_	—	_	_	_	_	_	_	0000
F240	FINDT	15:0	_	_	—	CVRMD	_	_	_	CTMUMD	-	-	_	_	_	_	_	AD1MD	0000
F050		31:16	_	_	—	—	_	_	—	—	—	—	_	_	_	_	_	_	0000
F250	FINDZ	15:0	_	_	_	—	_	_	_	—	—	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
F 260		31:16	_	_	_	_	_	_	_	—	-	-	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIND3	15:0	_	_	—	_	_	_	_	—	-	-	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	_	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	0000
F270		15:0	_	_	_	—	_	_	—	—	_	—	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	_	_	_	CAN1MD	_	_	—	USBMD ⁽¹⁾	_	—	_	—	_	_	I2C1MD	I2C1MD	0000
F20U	FINDS	15:0	_	_	_	_	SPI4MD	SPI3MD	SPI2MD	SPI1MD	-	-	_	U5MD	U4MD	U3MD	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	RTCCMD	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

© 2014-2016 Microchip Technology Inc.

28.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS60001114), Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX1XX/2XX/5XX 64/100-pin devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

АС СНА	RACTERI	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		40 40	MHz MHz	EC (Note 4) ECPLL (Note 3)			
OS11		Oscillator Crystal Frequency	3	_	10	MHz	XT (Note 4)			
OS12			4	_	10	MHz	XTPLL (Notes 3,4)			
OS13			10	—	25	MHz	HS (Note 5)			
OS14			10	_	25	MHz	HSPLL (Notes 3,4)			
OS15			32	32.768	100	kHz	Sosc (Note 4)			
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	—	_	_	—	See parameter OS10 for Fosc value			
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	_	_	ns	EC (Note 4)			
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	_	0.05 x Tosc	ns	EC (Note 4)			
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)			
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)			
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12		mA/V	VDD = 3.3V, TA = +25°C (Note 4)			

TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-34:	ADC MODULE SPECIFICATIONS (CONTINUED)
--------------	---------------------------------------

	AC CHAR	ACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/V	REF-						
AD20d	Nr	Resolution		10 data bits	3	bits	(Note 3)			
AD21d	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD22d	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)			
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD24d	Eoff	Offset Error	> -2	_	< 2	Lsb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD25d		Monotonicity	—	—	—	_	Guaranteed			
Dynami	ic Performa	ance					·			
AD32b	SINAD	Signal to Noise and Distortion	55	58.5		dB	(Notes 3,4)			
AD34b	ENOB	Effective Number of bits	9.0	9.5	_	bits	(Notes 3,4)			

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand Architecture Product Groups Flash Memory Family Program Memory Size Pin Count Tape and Reel Flag (if Speed Temperature Range Package Pattern	PIC32 MX 1XX F 064 H T - 50 I / PT - XXX	Example: PIC32MX170F512H-50I/PT: General Purpose PIC32, 32-bit RISC MCU, 512 KB program memory, 64-pin, Industrial temperature, TQFP package.		
Flash Memory Family				
Architecture	MX = 32-bit RISC MCU core			
Product Groups	1XX = General Purpose microcontroller family 2XX = USB microcontroller family 5XX = USB and CAN microcontroller family			
Flash Memory Family	F = Flash program memory			
Program Memory Size	064 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB			
Pin Count	H = 64-pin L = 100-pin			
Speed	= 40 MHz (blank, no marking on package) 50 = 50 MHz			
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-Temp)			
Package	PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)			
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise ES = Engineering Sample	e)		