

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f256l-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note 1: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). This document contains device-specific information for PIC32MX1XX/2XX/5XX 64/100-pin devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX1XX/2XX/ 5XX 64/100-pin family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX1XX/2XX/5XX 64/100-PIN BLOCK DIAGRAM

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX/5XX 64/ 100-pin family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of $0.1 \ \mu F$ (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF . Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF .
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

NOTES:

10.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 10-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The PIC32 USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- Note: The implementation and use of the USB specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	-	—	—	—	_	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—		—	-	-			—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—		—	-	-			—
	R/WC-0, HS	R-0	R/WC-0, HS					
7:0	STALLIE		RESUMEIE(2)		TRNIF(3)	SOFIE	LIERRIE(4)	URSTIF ⁽⁵⁾
	OTALLI		REGOMEN	IDEEII		0011		DETACHIF ⁽⁶⁾

REGISTER 10-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	e bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

510 0 1	Ŭ	
bit 7		STALLIF: STALL Handshake Interrupt bit
		1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		$1 =$ K-State is observed on the D+ or D- pin for 2.5 μ s
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)
		0 = NO idle condition detected
bit 3		TRNIF: loken Processing Complete Interrupt bit ⁽⁹⁾
		\perp = Processing of current token is complete; a read of the UTSTAT register will provide endpoint information
hit O		
DIL Z		1 = SOF token received by the peripheral or the SOF threshold reached by the bost
		0 = SOF token was not received nor threshold reached
hit 1		UERRIE: USB Error Condition Interrupt bit ⁽⁴⁾
Sit 1		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1:	This bit is valid only if the HOSTEN bit is set (see Register 10-11), there is no activity on the USB for
		2.5 μ s, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

ess										Bits	6								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6500	ANSELE	31:16		—	_	—	—	_	—	—	-	—	—	—	—	—	_	—	0000
0000	ANOLLI	15:0	_	—	ANSELE13	ANSELE12	_			ANSELE8		—				ANSELE2	ANSELE1	ANSELE0	3107
6510	TRISE	31:16	—	—	_	—	_	_	_	—	_	—			_	—		—	0000
0010	Indo	15:0	_	—	TRISF13	TRISF12	_			TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6520	PORTE	31:16	_	—	—	—	_		—			—						—	0000
0020	TORM	15:0	_	—	RF13	RF12	_		—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530		31:16	_	—	—	—	_		—			—						—	0000
0000	L/II	15:0	_	—	LATF13	LATF12	_		—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCE	31:16	_	—	—	—	_		—			—						—	0000
0040	0001	15:0	—	—	ODCF13	ODCF12	—	—	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550		31:16	_	—	—	—	_	-	—	—	-	—	—	—	—	—	_	-	0000
0000		15:0	_	—	CNPUF13	CNPUF12	_	-	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	0000
6560		31:16	_	—	—	—	_	-	—	—	-	—	—	—	—	—	_	-	0000
0000		15:0	_	—	CNPDF13	CNPDF12	_	-	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570		31:16	_	—	—	—	_	-	—	—	-	—	—	—	—	—	_	-	0000
0370	CINCOIN	15:0	ON	—	SIDL	—	_	-	—	—	-	—	—	—	—	—	_	-	0000
6580		31:16		_	—	—	_		_	_		_	_	_	_	_		—	0000
0000		15:0	_	—	CNIEF13	CNIEF12	_	_	—	CNIEF8	CNIEF7	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_		—		_	_	_	-	_	_	_	_	_	—	_	—	0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	CN STATF7	CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-11: PORTF REGISTER MAP FOR PIC32MX130F128L, PIC32MX150F256L, AND PIC32MX170F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- Master and Slave modes support
- Four different clock formats
- · Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 SUFO buffers act as 4/8/10 local data FIFO
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 17-1: SPI MODULE BLOCK DIAGRAM

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP (CONTINUED)

ess		ē								Bi	ts								s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16		-	_	-	_	_		—	_	_		_		_	_		0000
5C40	SPI3CON2	15:0	SPI SGNEXT	-	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_		AUD MONO	—	AUDMC)D<1:0>	0000
		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:)>	MCLKSEL	—	_	—	_	—	SPIFE	ENHBUF	0000
5E00	SPI4CON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
FF 40	CDIACTAT(2)	31:16	—	—	—		RXE	BUFELM<4:	0>		—	—	—		TXI	BUFELM<4	:0>		0000
5E10	3F1431A1	15:0	_		_	FRMERR	SPIBUSY	_	-	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	19EB
55.00		31:16									31.05								0000
3E20		15:0								DAIA	01.04								0000
5520	SDIABBC(2)	31:16					—	-		_	—	_		—		_	_		0000
5E30		15:0	_	_	_	_	—	_	_					BRG<8:0>					0000
		31:16					_	-		_	_	_		_		_	_		0000
5E40	SPI4CON2 ⁽²⁾	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_		_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

ess	-	đ								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6440		31:16	_				—			—		—			—	—		—	0000
0440	U3DKG.	15:0							Bau	d Rate Gen	erator Pres	caler			-				0000
6600		31:16	_	_	—	_		_	_	—			_	_			_	—	0000
0000	OHMODE	15:0	ON		SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	114STA(1)	31:16	_	_	—	_		_	_	ADM_EN				ADDF	R<7:0>				0000
0010	04017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620		31:16	—		_	_		_		—			_	_	_	—	_	—	0000
0020	OFINILO	15:0	—		_	_		_		TX8				Transmit	Register				0000
6630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OHIVINEO	15:0	—		_	_		_		RX8				Receive	Register				0000
6640		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	0 10100	15:0							Bau	d Rate Gen	erator Pres	caler						•	0000
6800	U5MODE(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	COMODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA(1,2)	31:16	—	—	—	_	—	_	—	ADM_EN				ADDR	R<7:0>	1		1	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
0020	001/11/20	15:0	—	_	—	_	—	_	_	TX8				Transmit	Register				0000
6830	U5RXRFG(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
	00.04.20	15:0	—	_	—	_	—	_	_	RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
00.0		15:0	Baud Rate Generator Prescaler 000									0000							

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess											Bits								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	PTCCON	31:16	—	—	—	—	_	—					CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	—	-		RTSECSEL	RTCCLKON	—	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16		_	_	—		_			_	_	_	_	_	_	_	—	0000
0210	RICALRI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC	AMASK<3:0>							ARPT	<7:0>				0000
0220	DTOTIME	31:16 HR10<3:0> HR01<3:0> MIN10<3:0> XX			xxxx														
0220	RICHIVIL	15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	_	_	_	—	xx00
0230	DTODATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>			MONTH10)<3:0>			MONTH	01<3:0>		xxxx
0230	RICDAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	_	_	_		WDAY0	1<3:0>		xx00
0240		31:16		HR1	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	_	_	_	—	xx00
0250		31:16		_	_	—		_				MONTH10)<3:0>			MONTH	01<3:0>		00xx
0230		15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	_	—	_		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available the Microchip from web site (www.microchip.com/PIC32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed
- Up to 48 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold Amplifier (SHA)
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- · Selectable buffer fill modes
- · Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has up to 28 analog input pins, designated AN0-AN27. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

4: This selection is only used with CTMU capacitive and time measurement.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	CH0NB	—			CH0S	B<5:0>		
00.40	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CH0NA	—			CH0S	A<5:0>		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_	_					_

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

bit 23

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 CHONB: Negative Input Select bit for Sample B 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL bit 30 Unimplemented: Read as '0'

bit 29-24 CH0SB<5:0>: Positive Input Select bits for Sample B

For 64-pin devices:

011110 = Channel 0 positive input is Open⁽¹⁾ 011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 011100 = Channel 0 positive input is IVREF⁽³⁾ 011011 = Channel 0 positive input is AN27 000001 = Channel 0 positive input is AN1 000000 = Channel 0 positive input is AN0

For 100-pin devices:

110010 = Channel 0 positive input is $Open(1)$
110010 - Channel o positive input is Open ,
110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾
110000 = Channel 0 positive input is IVREF ⁽³⁾
101111 = Channel 0 positive input is AN47
•
•
•
0000001 = Channel 0 positive input is AN1
0000000 = Channel 0 positive input is AN0
CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
1 = Channel 0 negative input is AN1

- 0 = Channel 0 negative input is VREFL
- bit 22 Unimplemented: Read as '0'

Note 1: This selection is only used with CTMU capacitive and time measurement.

- 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
- 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	—	WAKFIL	—	—	—	SEC	62PH<2:0>(1	,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0	>	Р	RSEG<2:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:	0> ⁽³⁾			BRP<	5:0>		

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.

- 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
- This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (C1CON < 23:21 >) = 100).

REGISTER 23-16: C1FIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0 THROUGH 15) (CONTINUED)

- bit 7 TXEN: TX/RX Buffer Selection bit 1 = FIFO is a Transmit FIFO 0 = FIFO is a Receive FIFO TXABAT: Message Aborted bit⁽²⁾ bit 6 1 = Message was aborted 0 = Message completed successfully TXLARB: Message Lost Arbitration bit⁽³⁾ bit 5 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received. TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority
 - 00 = Lowest message priority
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (C1CON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGIST	ER 23-17:	C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15) (CONTINUED)
bit 9	TXHALFIF: TXEN = 1: 1 = FIFO is 0 = FIFO is	: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) ≤ half full > half full
	TXEN = 0: Unused, rea	(FIFO configured as a receive buffer) ads '0'
bit 8	TXEMPTYI <u>TXEN = 1:</u> 1 = FIFO is 0 = FIFO is	F: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) empty not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> Unused, rea	(FIFO configured as a receive buffer) ads '0'
bit 7-4	Unimplem	ented: Read as '0'
bit 3	RXOVFLIF TXEN = 1: Unused, rea	: Receive FIFO Overflow Interrupt Flag bit (FIFO configured as a transmit buffer) ads '0'
	$\frac{TXEN = 0:}{1 = Overflo}$ $0 = No over$	(FIFO configured as a receive buffer) w event has occurred rflow event occured
bit 2	RXFULLIF	: Receive FIFO Full Interrupt Flag bit ⁽¹⁾
	$\frac{\text{TXEN} = 1:}{\text{Unused, res}}$	(FIFO configured as a transmit buffer) ads '0'
	$\frac{\text{TXEN} = 0:}{1 = \text{FIFO is}}$ $0 = \text{FIFO is}$	(FIFO configured as a receive buffer) full not full
bit 1	RXHALFIF	: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾
	$\frac{\text{TXEN} = 1}{\text{Unused, res}}$	(FIFO configured as a transmit buffer) ads '0'
	$\frac{\text{TXEN} = 0:}{1 = \text{FIFO is}}$ $0 = \text{FIFO is}$	(FIFO configured as a receive buffer) ≥ half full < half full
bit 0	RXNEMPT TXEN = 1: Unused, rea	YIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) ads '0'
	<u>TXEN = 0:</u> 1 = FIFO is 0 = FIFO is	(FIFO configured as a receive buffer) not empty, has at least 1 message empty

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R-x	R-x									
31.24		C1FIFOUAn<31:24>									
22.16	R-x	R-x									
23.10	C1FIFOUAn<23:16>										
15.0	R-x	R-x									
15.0	C1FIFOUAn<15:8>										
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7.0	C1FIFOUAn<7:0>										

REGISTER 23-18: C1FIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' ('n' = 0 THROUGH 15)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 C1FIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

REGISTER 23-19: C1FIFOCIn: CAN MODULE MESSAGE INDEX REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	—	—	—	—	—	—	_	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	_	—			
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	—	—	_	—			
7:0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
7:0	_	_	_	C1FIFOCIn<4:0>							

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 C1FIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

28.2 Registers

Virtual Address (BFC0_#) Bits All Resets Bit Range Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY _ _ _ _ _ ____ _ xxxx _ _ _ _ _ 0BF0 DEVCFG3 15:0 USERID<15:0> xxxx 31:16 FPLLODIV<2:0> _ — _ _ _ _ _ _ _ _ _ xxxx _ 0BF4 DEVCFG2 UPLLEN⁽¹⁾ 15:0 _ UPLLIDIV<2:0>(1) FPLLMUL<2:0> _ FPLLIDIV<2:0> xxxx _ _ _ FWDTWINSZ<1:0> FWDTEN WINDIS WDTPS<4:0> 31:16 _ _ xxxx _ ____ _ 0BF8 DEVCFG 15:0 FCKSM<1:0> FPBDIV<1:0> OSCIOFNC POSCMOD<1:0> IESO SOSCE FNOSC<2:0> _ _ _ _ xxxx 31:16 CP BWP PWP<9:6> _ _ _ _ _ _ _ _ xxxx _ _ 0BFC DEVCFG0 15:0 PWP<5:0> _ _ _ ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ _ _

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE AND REVISION ID SUMMARY

by end	ess										Bi	ts								(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
P20 CP3CON 15:0 — — IOLOCK PMDLOCK — — — — — — — IODEVID F20 DEVID 31:16 VER<3:0> VER<3:0> DEVID DEVID<27:16> xxx F230 SYSKEY(3) 31:16 15:0 SYSKEY<31:0> SYSKEY 000	F200	CECCON	31:16	—	_	_	—	_	—	_	_	_	_	—	_	—	—	_	—	0000
PEVID 31:16 VER<3:0> DEVID DEVID<27:16> DEVID 15:0 DEVID<15:0> DEVID	F200	CFGCON	15:0	-	_	IOLOCK	PMDLOCK		—	_	_	_	_	_	—	JTAGEN	TROEN ⁽²⁾	—	TDOEN	000B
P220 DEVID DEVID xxx 15:0 DEVID 000 F230 SYSKEY(3) 31:16 000 15:0 SYSKEY 000	F000		31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F230 SYSKEY ⁽³⁾ 31:16 15:0 SYSKEY<31:0>	F220	DEVID	15:0	DEVID<15:0> xxx:							xxxx									
F230 STSKET 15:0 STSKET	F000		31:16								OVOREN	/~21.0>								0000
	F230	STOKET	15:0		SYSKEY<31:0>										0000					

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device.

2: This bit is not available on 64-pin devices.

AC CHA		ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS		
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	_	1 μs + 8 SYSCLK cycles	_	_	_	
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS	—	
SY30	TBOR	BOR Pulse Width (low)	_	1	_	μS	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.