

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f256lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 100-PIN USB DEVICES (CONTINUED)

10	0-PIN TQFP (TOP VIEW)			
	PIC32MX230F128L PIC32MX530F128L PIC32MX250F256L PIC32MX550F256L PIC32MX270F512L PIC32MX570F512L			100
			-	1
Pin #	Full Pin Name		Pin #	Full Pin Name
71	RPD11/PMA14/RD11		86	VDD
72	RPD0/INT0/RD0]	87	AN44/C3INA/RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13]	88	AN45/RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14]	89	RPG1/PMD9/RG1
75	Vss	T	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	1	91	RA6
77	AN25/RPD2/RD2]	92	CTED8/RA7
78	AN26/C3IND/RPD3/RD3	1	93	AN46/PMD0/RE0
79	AN40/RPD12/PMD12/RD12	1	94	AN47/PMD1/RE1
80	AN41/PMD13/RD13	1	95	RG14
81		1	06	B010
	RPD4/PMWR/RD4	1	96	RG12
82	RPD4/PMWR/RD4 RPD5/PMRD/RD5		96 97	RG12 RG13
82 83	RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6		96 97 98	RG12 RG13 AN20/PMD2/RE2
82 83 84	RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6 AN43/C3INB/PMD15/RD7		96 97 98 99	RG12 RG13 AN20/PMD2/RE2 RPE3/CTPLS/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

2.7.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following examples are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
 - Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to \sim VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with \leq 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.7.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—		—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
15:8				BMXDK	PBA<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				BMXDK	PBA<7:0>			

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	ROTRIM<8:1>													
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:10	ROTRIM<0>	—	—	—	—	—	—	—						
45.0	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0						
15:8	—	—	—	—	—	—	—	—						
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
7:0	_	_	—	_	_	_	_	_						

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend: y = Value set from Configuration bits on POR								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

TAB	LE 9-3:	DI	ИА СНА	NNEL () THRO	UGH CH	IANNEL	. 3 REG	ISTER I	MAP									
sse										Bi	ts								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060	DCH0CON	31:16	—	_	—	_	_	_	_	—	_	—	—		—		—	—	0000
		15:0	CHBUSY	_	—	—	—		_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	<1:0>	0000
3070	DCH0ECON	31:16	—	_	—	-	-	—	_	_	050005	OAD ODT	DATEN	CHAIR	Q<7:0>				OOFF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORI		SIRQEN					FFF8
3080	DCH0INT	31:10	_		_		_	_			CHSDIE	CHSHIE			CHBCIE	CHCCIE		CHERIE	0000
		31.16	_	_	_			—			CHODIF	Спопіг	CHUDIF	CHDHIF	CHECIF	CHCCIF	CHIAF	CHERIF	0000
3090	DCH0SSA	15.0								CHSSA	<31:0>								0000
		31:16																	0000
30A0	DCH0DSA	15:0								CHDSA	<31:0>								0000
0000	0000017	31:16	_	_		—	—	—		_	—		—	_		—	—		0000
30B0	DCH0SSIZ	15:0								CHSSIZ	2<15:0>								0000
2000		31:16	_	—	_	—	_	—	_	_	—	_	_	_	_	—	_	_	0000
3000	DCHUDSIZ	15:0								CHDSIZ	2<15:0>								0000
3000		31:16	—	_	—	_	_	—	_	—	_	—	—	—	—	_	—	—	0000
0000		15:0								CHSPTI	R<15:0>								0000
30E0	DCH0DPTR	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0								CHDPTI	R<15:0>								0000
30F0	DCH0CSIZ	31:16	—	_	—	_	_	—	_		-	—	_	_	_	_	_	_	0000
		15:0								CHCSIZ	2<15:0>								0000
3100	DCH0CPTR	31.10	_		_		_	_						_	_	_			0000
		31.16	_				_				<13.02			_					0000
3110	DCH0DAT	15.0	_		_									CHPDA	T<7 [.] 0>				0000
		31:16	_	_			_			_	_	_	_	_	_	_	_		0000
3120	DCH1CON	15:0	CHBUSY	_	_	_	_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	<1:0>	0000
		31:16	_	_	_	_	_	_	_			Į	Į	CHAIR	Q<7:0>				00FF
3130	DCHIECON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FFF8
2140		31:16	—	_	_	—	_	—	—	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
3140	DCHIINI	15:0	—	_	_	_	_	_	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16								CHSSA	<31.0>								0000
0.00	2011100/1	15:0 0000																	
3160	DCH1DSA	31:16								CHDSA	<31:0>								0000
Ļ		15:0	L				(.)												0000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

10.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 10-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The PIC32 USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- Note: The implementation and use of the USB specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—		—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—		—		—
7.0	R/WC-0, HS	U-0	R/WC-0, HS					
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	-	—
15.0	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
15.6			_	_	_	_		—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾	HEBDET			DDDDCT	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	USBROI	TIOSTEIN"	RESUMENT	FFDROI	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability enabled
- 0 = USB host capability disabled

bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling activated
- 0 = RESUME signaling disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB38	RPA14R	31:16		—	_	—	_	—	_	—	—	—	_	—	—	—			0000
		15:0	—	—	_	—	-	—	-	—	—	—	—	—		RPA14	<3:0>		0000
FB3C	RPA15R	31:16		_				_		_				_		-	—	_	0000
		15:0	_	_				_		_			_	_		RPA1:	o<3:0>		0000
FB40	RPB0R	31:16	_	_				_		_			_	_	_	_	-		0000
		15:0	_	_						_						RPB0	<3:0>		0000
FB44	RPB1R	31:16	_	_						_			_		_	-	-	_	0000
		15:0	_					_		_						RPB1	<3:0>		0000
FB48	RPB2R	31:10	_	_		_	_	_	_	_	_	_	_	_	_	-		-	0000
		15:0	_	_		_	_	_	_	_	_	_	_	_		RPB2	<3:0>		0000
FB4C	RPB3R	31:10	_	_		_	_	_	_	_	_	_	_	_	_	-		-	0000
		15:0	_	_		_	_	_	_	_	_	_	_	_		RPB3	<3:0>		0000
FB54	RPB5R	31.10						_							_			_	0000
		10.0														RPB0	<3.0>		0000
FB58	RPB6R	31.10													_		-2:0>	_	0000
		21.16		_				_								RF DU	<3.0>		0000
FB5C	RPB7R	31.10													_		-2:0>	_	0000
		31.16		_				_								RFD/	<3.0>		0000
FB60	RPB8R	15.0																	0000
		31.16														INF DO	<3.0>		0000
FB64	RPB9R	15.0														RPB0	<3·0>		0000
		31.16															-0.0-		0000
FB68	RPB10R	15.0							_							RPB1()<3.0>		0000
		31.16										_				_			0000
FB78	RPB14R	15.0														RPB14	1<3:0>		0000
		31.16													_	_			0000
FB7C	RPB15R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB1	5<3:0>		0000
		31:16	_		_		_		_				_			_	_		0000
FB84	RPC1R	15:0	_	_	-	_	-	_	-	_	_	_	_	_		RPC1	<3:0>		0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

DS60001290D-page 153

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		pin name	e]R<3:0>	

REGISTER 11-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 11-1 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 11-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—	_	_		RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 11-2 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	DATAOUT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				DATAOU	Γ<7:0>					

REGISTER 20-4: PMDOUT: PARALLEL PORT OUTPUT DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAOUT<15:0>: Port Data Output bits

This register is used for Read operations in the Enhanced Parallel Slave mode and Write operations for Dual Buffer Master mode.

In Dual Buffer Master mode, the DUALBUF bit (PMPCON<17>) = 1, a write to the MSB triggers the transaction on the PMP port. When MODE16 = 1, MSB = DATAOUT<15:8>. When MODE16 = 0, MSB = DATAOUT<7:0>.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	_	—	—		_
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				DATAIN<	:15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATAIN<7:0>							

REGISTER 20-5: PMDIN: PARALLEL PORT INPUT DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAIN<15:0>: Port Data Input bits

This register is used for both Parallel Master Port mode and Enhanced Parallel Slave mode. In Parallel Master mode, a write to the MSB triggers the write transaction on the PMP port. Similarly, a read to the MSB triggers the read transaction on the PMP port. When MODE16 = 1, MSB = DATAIN<15:8>. When MODE16 = 0, MSB = DATAIN<7:0>.

Note: This register is not used in Dual Buffer Master mode (i.e., DUALBUF bit (PMPCON<17>) = 1).

Note: In Master mode, a read will return the last value written to the register. In Slave mode, a read will return indeterminate results.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E

REGISTER 20-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend: HSC = Set by Hardware; Cleared by Software				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 0 = No overflow occurred
- bit 13-12 **Unimplemented:** Read as '0'

bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits

- 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
- 0 = Input Buffer does not contain any unread data
- bit 7 OBE: Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow occurred bit 5-4 **Unimplemented:** Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN3	MSEL	3<1:0>	FSEL3<4:0>				
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN2	MSEL2<1:0>		FSEL2<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN1	MSEL	1<1:0>		F	SEL1<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN0	MSEL0<1:0>		FSEL0<4:0>				

REGISTER 23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R-x	R-x								
31.24	C1FIFOUAn<31:24>									
00.40	R-x	R-x								
23.10	C1FIFOUAn<23:16>									
15.0	R-x	R-x								
10.0	C1FIFOUAn<15:8>									
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
7.0				C1FIFOL	JAn<7:0>					

REGISTER 23-18: C1FIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' ('n' = 0 THROUGH 15)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 C1FIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

REGISTER 23-19: C1FIFOCIn: CAN MODULE MESSAGE INDEX REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	—	—	—	—	—	_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	_	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	_	—		
7.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
7.0	_	_	_	C1FIFOCIn<4:0>						

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 C1FIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 19-10 **PWP<9:0>:** Program Flash Write-Protect bits

	Prevents s represent	 Belected program Flash memory pages from being modified during code execution. The PWP bits the one's compliment of the number of write protected program Flash memory pages. 11 = Disabled 10 = Memory below 0x0400 address is write-protected 11 = Memory below 0x0800 address is write-protected 12 = Memory below 0x000 address is write-protected 13 = Memory below 0x000 address is write-protected 14 = Memory below 0x1000 (4K) address is write-protected 15 = Memory below 0x1400 address is write-protected 16 = Memory below 0x1400 address is write-protected 16 = Memory below 0x1600 address is write-protected 16 = Memory below 0x1600 address is write-protected 17 = Memory below 0x100 (4K) address is write-protected 18 = Memory below 0x100 (4K) address is write-protected 19 = Memory below 0x100 address is write-protected 10 = Memory below 0x100 address is write-protected 11 = Memory below 0x2000 (8K) address is write-protected 12 = Memory below 0x200 address is write-protected 13 = Memory below 0x200 address is write-protected 14 = Memory below 0x200 address is write-protected 15 = Memory below 0x200 address is write-protected 16 = Memory below 0x200 address is write-protected 17 = Memory below 0x200 address is write-protected 18 = Memory below 0x200 address is write-protected 19 = Memory below 0x200 address is write-protected 10 = Memory below 0x200 address is write-protected 11 = Memory below 0x200 address is write-protected 12 = Memory below 0x300 address is write-protected 13 = Memory below 0x300 address is write-protected 14 = Memory below 0x300 address is write-protected 15 = Memory below 0x300 address is write-protected 16 = Memory below 0x300 address is write-protected 17 = Memory below 0x3400 address is write-protected 18							
	11111100	000 = Memory below 0x3C00 address is write-protected							
	1111101111 = Memory below 0x4000 (16K) address is write-protected								
	•								
	•	11 - Memory below 0x10000 (64K) address is write protected							
	•	LII – Memory below 0x10000 (04K) address is write-protected							
	•								
	• 1101111111 = Memory below 0x20000 (128K) address is write-protected								
	•								
	•								
	10111111	11 = Memory below 0x40000 (256K) address is write-protected							
	•								
	•								
	01111111	11 = Memory below 0x80000 (512K) address is write-protected							
	•								
	•	100 = All possible memory is write-protected							
	Noto:	These bits are effective only if Reet Elash is also protected by clearing the RW/R bit							
	Note.	(DEVCFG0<24>).							
bit 9-5	Reserved	: Write '1'							
bit 4-3	ICESEL<1	:0>: In-Circuit Emulator/Debugger Communication Channel Select bits							
	11 = PGE 10 = PGE 01 = PGE 00 = Rese	C1/PGED1 pair is used C2/PGED2 pair is used C3/PGED3 pair is used prved							
bit 2	JTAGEN:	JTAG Enable bit ⁽¹⁾							
	1 = JTAG	is enabled							
	0 = JTAG	is disabled							
bit 1-0	DEBUG<1	:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)							
	1x = Debu 0x = Debu	igger is disabled igger is enabled							

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
15:8	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾		—		_
	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-1
7:0	_	_	_	_	JTAGEN	_	_	TDOEN

REGISTER 28-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

- bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed
- bit 11-4 Unimplemented: Read as '0'
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 31-34: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions				
Device	Device Supply										
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5		Lesser of VDD + 0.3 or 3.6	V	_				
AD02	AVss	Module Vss Supply	Vss	_	AVDD	V	(Note 1)				
Referen	ce Inputs										
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)				
AD06	Vrefl	Reference Voltage Low	AVss		VREFH – 2.0	V	(Note 1)				
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0		AVDD	V	(Note 3)				
AD08	IREF	Current Drain	_	250	400	μA	ADC operating				
AD08a			—	—	3	μA	ADC off				
Analog	Input	1			1						
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—				
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/2	V	—				
AD14	VIN	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	—				
AD15	_	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10\ k\Omega \end{array}$				
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)				
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-		-					
AD20c	Nr	Resolution		10 data bit	S	bits	—				
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V				
AD22c	DNL	Differential Non-linearity	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)				
AD23c	Gerr	Gain Error	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V				
AD24c	EOFF	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V				
AD25c	_	Monotonicity		_	—		Guaranteed				

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

(8) – One TAD for end of conversion.