

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512h-50i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber						
Pin Name	64-pin QFN/ TQFP TQFP		Pin Type	Buffer Type	Description			
VUSB3V3 (2)	35	55	Р	—	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.			
VBUSON ⁽²⁾	11	20	0	—	USB Host and OTG bus power control Output			
D+ ⁽²⁾	37	57	I/O	Analog	USB D+			
D-(2)	36	56	I/O	Analog	USB D-			
USBID ⁽²⁾	33	51	Ι	ST	USB OTG ID Detect			
PGED1	16	25	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1			
PGEC1	15	24	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1			
PGED2	18	27	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2			
PGEC2	17	26	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2			
PGED3	13	22	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3			
PGEC3	14	23	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3			
CTED1	_	17	Ι	ST	CTMU External Edge Input 1			
CTED2		38	I	ST	CTMU External Edge Input 2			
CTED3	18	27	I	ST	CTMU External Edge Input 3			
CTED4	22	33	Ι	ST	CTMU External Edge Input 4			
CTED5	29	43	Ι	ST	CTMU External Edge Input 5			
CTED6	30	44	Ι	ST	CTMU External Edge Input 6			
CTED7	_	9	Ι	ST	CTMU External Edge Input 7			
CTED8		92	Ι	ST	CTMU External Edge Input 8			
CTED9		60	Ι	ST	CTMU External Edge Input 9			
CTED10	21	32	Ι	ST	CTMU External Edge Input 10			
CTED11	23	34	Ι	ST	CTMU External Edge Input 11			
CTED12	15	24	Ι	ST	CTMU External Edge Input 12			
CTED13	14	23	Ι	ST	CTMU External Edge Input 13			
C1RX	PPS	PPS	Ι	ST	Enhanced CAN Receive			
C1TX	PPS	PPS	0	ST	Enhanced CAN Transmit			

Legend: CMOS = CMOS compatible input or output

P = Power

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer **Note 1:** This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module. 4: This pin is only available on 100-pin devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R	R	R	R	R	R	R	R		
31:24				BMXPFN	ISZ<31:24>					
00.40	R	R	R	R	R	R	R	R		
23:16	BMXPFMSZ<23:16>									
45.0	R	R	R	R	R	R	R	R		
15:8	BMXPFMSZ<15:8>									
7.0	R	R	R	R	R	R	R	R		
7:0	BMXPFMSZ<7:0>									

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash 0x00080000 = Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

				. ,						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R	R	R	R	R	R	R	R		
31:24				BMXBOO	TSZ<31:24>					
00.40	R	R	R	R	R	R	R	R		
23:16	BMXBOOTSZ<23:16>									
45.0	R	R	R	R	R	R	R	R		
15:8				BMXBOC)TSZ<15:8>					
7.0	R	R	R	R	R	R	R	R		
7:0				BMXBO	OTSZ<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB Boot Flash

© 2014-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMDA	TA<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMDATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMDATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		NVMDATA<7:0>									

REGISTER 6-4: NVMDATA: FLASH PROGRAM DATA REGISTER

I edend.

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

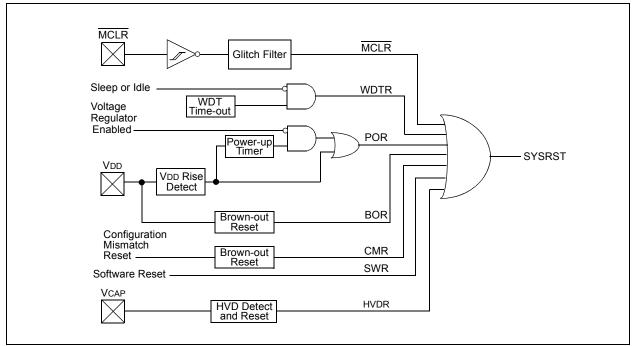
Note: The bits in this register are only reset by a Power-on Reset (POR).

NVMSRCADDR: SOURCE DATA ADDRESS REGISTER **REGISTER 6-5:**

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				NVMSRCA	DDR<31:24>	•				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMSRCADDR<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	NVMSRCADDR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				NVMSRC	ADDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits


The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

7.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 7-1.

FIGURE 7-1: SYSTEM RESET BLOCK DIAGRAM

KE0131	EGISTER 10-1: 0101GIR: 03B 01G INTERROFT STATUS REGISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	_	_	_	_	_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	_	_	_	_	_	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—	—		-	_	-	—		
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	U-0	R/WC-0, HS		
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF		

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

	$\Box R 10=10.$							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—	-	-	—	-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	—	-		—	-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	—	—	—	_	_	—	-
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	H<23:16>			

REGISTER 10-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24		—	—		_	_		—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	-	—	—	-	—	_	-	—					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
15.0	-	—	—	-	—	_	-	—					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	BDTPTRU<31:24>												

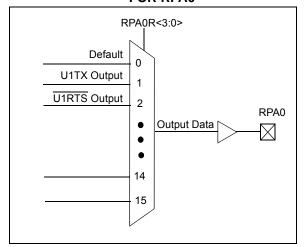
REGISTER 10-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.


The 32-bit BDT base address is 512-byte aligned.

11.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 11-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

11.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

11.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

11.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

-							-												
ress)	N .	Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	_	_	_	_	—	—	—	_	—	—	—		—		I	—	0000
0000	ANGELA	15:0	_	—	_	—	—	ANSELA10	ANSELA9	—	—	_	_		_	_		_	0060
6010	TRISA	31:16	_	—	_	—	—	—	—	—	—	_	_		_	_		_	0000
0010	INISA	15:0	TRISA15	TRISA14	—	—	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020	PORTA	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0020	FURIA	15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0030	LAIA	15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0040	ODCA	15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	_	—	_	—	_	—	—	_	—	—	—	-	—	_	_	—	0000
0000		15:0	CNPUA15	CNPUA14	—	—	_	CNPUA10	CNPUA9	—	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	_	—	_	_	_	_	—	_	_			_		_			0000
0000		15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
0010		15:0	ON	—	SIDL	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
6080	CNENA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	ONEN	15:0	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	_	—	_	—	—	—	—	_	—	—	—	_	—	—	_	—	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6500	ANSELF	31:16	_	-	—	—	_	—	—	_	-	—	—	—	—	—	-	-	0000
0000	ANOLLI	15:0	—	_	ANSELE13	ANSELE12	—	_	_	ANSELE8		—	_			ANSELE2	ANSELE1	ANSELE0	3107
6510	TRISF	31:16	—	_	—	—	—	—	_	—	_	—	—	_			_	_	0000
0010	TRIO	15:0	_	-	TRISF13	TRISF12	_	—	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6520	PORTF	31:16	_	-	—	—	_	—	—	—	-	—	—	_	—	—	_	_	0000
0020	1 OKII	15:0	_	-	RF13	RF12	_	—	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATE	31:16	_	-	—	—	_	—	—	—	-	—	—	_	—	—	_	_	0000
0000	LAII	15:0	_	-	LATF13	LATF12	_	—	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	_	-	—	—	_	—	—	—	-	—	—	_	—	—	_	_	0000
0340	ODCI	15:0	_		ODCF13	ODCF12	-	_	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550	CNPUF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0330	CINFUI	15:0	_		CNPUF13	CNPUF12	-	_	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	0000
6560	CNPDF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0300	CINF DI	15:0	_		CNPDF13	CNPDF12	-	_	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570	CNCONF	31:16	_	_	—	—	—	_	_	—	_	—	_	_	—	_	-	-	0000
0370	CINCOIN	15:0	ON		SIDL	_	-	_	—	_		_	_	_	_	_			0000
6580	CNENF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0380	CINLINI	15:0	_		CNIEF13	CNIEF12	-	_	—	CNIEF8	CNIEF7	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	—	—	—	_	—	_		_	_	—	_	—			0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	CN STATF7	CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-11: PORTF REGISTER MAP FOR PIC32MX130F128L, PIC32MX150F256L, AND PIC32MX170F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FA04	INT1R	31:16		—	—	-	-	—	-	-	-	—	-	-	—	—	-	_	0000
1 A04		15:0	_	—	_		_	_	_	_	_	_	_	_		INT1F	<3:0>		0000
FA08	INT2R	31:16	_	_			_	_	_	—	_	_	_	_	—	_	—	_	0000
17.00	1111211	15:0							—		_	_				INT2F	<3:0>		0000
FA0C	INT3R	31:16	_	—			_		_	_	_	_	_	_			_		0000
		15:0	—	—	—	—	_	—	—	—	—	—	—	_		INT3F	<3:0>		0000
FA10	INT4R	31:16	—	—	_	—	_	—	—	—	—	_	—	_	—	—	—	—	0000
		15:0			_	_	_		_	_	_	_	_	_		INT4F	<3:0>		0000
FA18	T2CKR	31:16	_										—			-	—	_	0000
		15:0			_	_				_	_	_		_		T2CK	<<3:0>	_	0000
FA1C	T3CKR	31:16	_	—					_			—			_	— 	-	—	0000
		15:0	_													T3CKF	<<3:0>		0000
FA20	T4CKR	31:16 15:0		_												T4CKF		—	0000
					_							_				1400	(<3.0>		0000
FA24	T5CKR	31:16 15:0														T5CKF		_	0000
		31:16											_		_		(<3.0>	_	0000
FA28	IC1R	15:0	_	_		_					_	_				IC1R	<3:0>		0000
		31:16	_	_	_	_						_			_	_		_	0000
FA2C	IC2R	15:0	_	_				_	_	_	_	_	_				<3:0>		0000
		31:16					_			_	_			_		_	_		0000
FA30	IC3R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC3R	<3:0>		0000
		31:16	_		_	_	_	_	_	_	_	_	_	_	_		_	_	0000
FA34	IC4R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC4R	<3:0>		0000
-	10.55	31:16	_	—	—	—	_	—	_	_	_	_	_	_	—	—	—	—	0000
FA38	IC5R	15:0	_	_	_	_		_	_	_	-	_				IC5R	<3:0>	•	0000
FA 40		31:16				—				_					—	—	—	—	0000
FA48	OCFAR	15:0		—	_	—	_	—		-	_	_	-	_		OCFA	R<3:0>		0000
FA50	U1RXR	31:16	_	_	—	—	_	—	_		_	_		-	_	_	_	_	0000
FAGU	UIKAR	15:0	_	—		_			_		-	—				U1RXI	R<3:0>		0000
FA54	U1CTSR	31:16	_	—	—	—		—				—			—	—	—	_	0000
1704	UTUTUR	15:0	_	—	—	_	_	—		_	_	—	_	_		U1CTS	R<3:0>		0000
FA58	U2RXR	31:16	_	—	—	—	_	—	_	_	_	—	_	—	—	—	—	—	0000
1,100	U LIVIN	15:0		—	—	—		—	—	—	—	—	—	—		U2RXI	R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS										Bi	its								
Virtual Addres (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5004	RPG1R	31:16		_	_	_	—	_	_		_		—	_		_	_	—	0000
FC04	RPGIR	15:0	—	—	_	_	_	—	—	—	—	_	_	—		RPG1	<3:0>		0000
5000	DDOOD	31:16	_	—	_	_	_	—	—	—	_	_	_	—	_	_	_	_	0000
FC98	RPG6R	15:0	—	—	_	_	—	—	—	—	_	—	—	—		RPG	6<3:0>		0000
5000	00070	31:16	—	—	_	_	—	—	—	—	_	—	—	—	—	—	_	—	0000
FC9C	RPG7R	15:0	_	—	_	_	_	—	—	—	_	_	_	_		RPG7	/<3:0>		0000
5040	DDOAD	31:16	_	—	_	_	_	—	—	-		_	_	_	_	_	_	_	0000
FCAU	RPG8R	15:0	_	—	_	_	_	—	—			_	_	—		RPG8	3<3:0>	•	0000
5044	DDOOD	31:16	_	—	_	_	_	—	—	_	-	_	_	_	_	_	_	_	0000
FCA4	RPG9R	15:0	—	—	_	_	—	—	—	_	_	—	—	—		RPG9	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

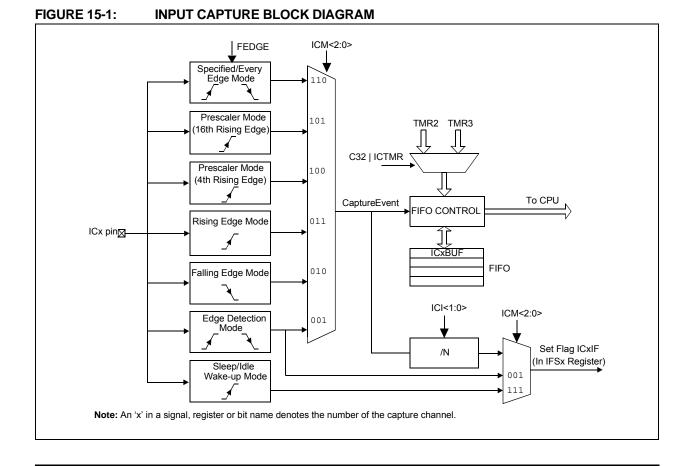
Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

15.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 15. "Input Capture"** (DS60001122) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.

- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

The other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		đ								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9100	ADC1BUF9	31:16 15:0							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000 0000
9110	ADC1BUFA	31:16 15:0		ADC Result Word A (ADC1BUFA<31:0>) 0000 0000 0000															
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>)															
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)							0000 0000
9140	ADC1BUFD	31:16 15:0		ADC Result Word D (ADC1BUFD<31:0>)															
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>) 0000															
9160	ADC1BUFF	31:16 15:0		ADC Result Word F (ADC1BUFF<31:0>)															

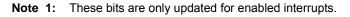
Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	_	_	_	—	_	—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
15:8	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
15.0	—	FILHIT<4:0>								
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
7.0	_		ICODE<6:0> ⁽¹⁾							


REGISTER 23-4: C1VEC: CAN INTERRUPT CODE REGISTER

Legend:

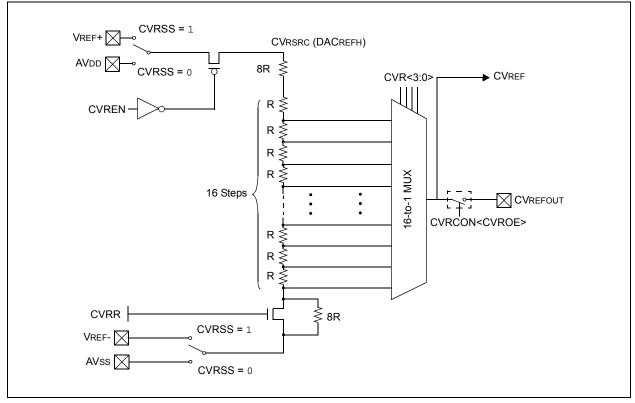
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Valu	le at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-13 Unimplemented: Read as '0'

```
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Reserved
         10000 = Reserved
         01111 = Filter 15
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
         ICODE<6:0>: Interrupt Flag Code bits<sup>(1)</sup>
bit 6-0
         1111111 = Reserved
         1001001 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
         1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0111111 = Reserved
         0010000 = Reserved
         0001111 = FIFO15 Interrupt (C1FSTAT<15> set)
         0000000 = FIFO0 Interrupt (C1FSTAT<0> set)
```


REGIST	TER 23-17: C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15) (CONTINUED)
bit 9	TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full <u>TXEN = 0:</u> (FIFO configured as a receive buffer)
bit 8	Unused, reads '0' TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'
bit 7-4	Unimplemented: Read as '0'
bit 3	RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occured
bit 2	RXFULLIF: Receive FIFO Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full
bit 1	RXHALFIF: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is ≥ half full 0 = FIFO is < half full
bit 0	RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty
Note 1	This bit is read-only and reflects the status of the EIEO

Note 1: This bit is read-only and reflects the status of the FIFO.


25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGIST	ER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 8	CTTRIG: Trigger Control bit
	1 = Trigger output is enabled
	0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	100010
	100001 = Maximum negative change from nominal current
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾
	11 = 100 times base current
	10 = 10 times base current
	01 = Base current level
	00 = 1000 times base current ⁽⁴⁾
Nets 4	When this bit is set for Dules Delay Operation, the EDOOOEL (0.0), bits must be act to (1.1)

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

32.1 DC Characteristics

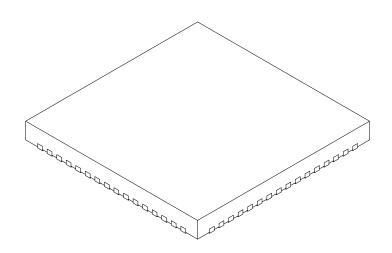
TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Characteristic	Voo Bango	Temp. Range	Max. Frequency	
	VDD Range (in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family	
MDC5	VBOR-3.6V	-40°C to +85°C	50 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 32-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽³⁾	Max.	Units	Conditions		
Operating Current (IDD) (Note 1, 2)						
MDC24	25	40	mA	50 MHz		


Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- CPU executing while(1) statement from Flash
- **3:** RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν	64		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness A3		0.20 REF		
Overall Width	Е	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

w

WWW Address	377
WWW, On-Line Support	9