

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512h-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	Dir Dir 25/17/9/1 24/16/8/0 RW-0 RW-0 IFS25 IFS24 RW-0 RW-0 IFS17 IFS16 RW-0 RW-0 IFS9 IFS8 RW-0 RW-0
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 5-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 5-1 for the exact bit definitions.

REGISTER 5-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 5-1 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
45.0	R/W-0 U-0		U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	—	—	—	—	_	CHCHNS ⁽¹⁾
7.0	R/W-0 R/W-0		R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	—	CHEDET	CHPF	RI<1:0>

REGISTER 9-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Control Registers 10.1

TABLE 10-1: USB REGISTER MAP

ess											Bit	s							
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040		31:16	_	_	_	_	_	_	_	_	_		_	_	-	_	_	_	0000
5040	UIUIGIR	15:0	—	_	—	—	—	—	_	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF	0000
5050		31:16	_	—	—	—	_	_	—	_	—	-	_	—		_	_	—	0000
3030	UIUIUIL	15:0	—	—	—	—	—	—	—	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE	0000
5060		31:16	—	—	—	—	—	—	—	—	-		_	-		—	—	-	0000
5000	010100IAI**	15:0	—				—	—		—	ID		LSTATE	_	SESVD	SESEND	—	VBUSVD	0000
5070		31:16	—				—	—		—	—	_	—	_		—	—	—	0000
0070	UIUIUUUU	15:0	—	—	—	—	—	—	—	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5080	U1PWRC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	—	—	—	—	—	—	—	—	UACTPND ⁽⁴⁾	—	—	USLPGRD	USBBUSY		USUSPEND	USBPWR	0000
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5200	U1IR ⁽²⁾	15.0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDI FIF	TRNIF	SOFIE	UERRIE	URSTIF	0000
		10.0									OINEEII		RECOMEN			00111	OLIVIA	DETACHIF	0000
		31:16	—	—			—	—		—	—	—	—	—	—	—	—	_	0000
5210	U1IE	15:0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
																		DETACHIE	0000
	(2)	31:16	—				—	—		—		—	—	—	_		—	—	0000
5220	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
											5.02.	5117121	5.1.5.12.	5.02.	5111021	0110102	EOFEF		0000
		31:16	—				_			—	—	—	—	—	_	—	—	—	0000
5230	U1EIE	15:0	_	_	_	_	_	_	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
														-			EOFEE		0000
5240	U1STAT ⁽³⁾	31:16	_				_	_		_		—	—	—	_	—	_	_	0000
		15:0	—				_	—		—		ENDF	PT<3:0>		DIR	PPBI	_	_	0000
		31:16	_				_	_		_		_	—		—	-	_	—	0000
5250	U1CON	15:0	_	_	_	_	_	_	_	_	JSTATE	SE0	PKTDIS	USBRST	HOSTEN	RESUME	PPBRST	USBEN	0000
													TOKBUSY					SOFEN	0000
5260	U1ADDR	31:16	—				_	—								0000			
		15:0	—	-	-	-	—	—	-	—	LSPDEN			DE	VADDR<6:	0>			0000
5270	U1BDTP1	31:16	_				_	_		_	_	—			—	—	—	_	0000
	l	15:0		—			—		—				BC	TPTRL<15:9>	•			—	0000
Leger	nd: x = unkr	10wn v	alue on R	leset; — =	unimpler :	nented, re	ad as '0'.	Reset va	lues are s	shown in h	nexadecimal.								

Legend:

With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

2: This register does not have associated SET and INV registers.

This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS			Bits																
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
EA 0.4		31:16		—	—	—	—	—	—	—	—	_	—	—	—	—	—	_	0000
FA04	INTIK	15:0		_	—	—	—	_		_	—	—	—	—		INT1F	R<3:0>		0000
FA08	INT2R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17,00	1111211	15:0	_	_	_		_	_	_	—	_		_	_		INT2F	?<3:0>		0000
FAOC	INT3R	31:16		_			—	_		_	—				_				0000
17.00	INTOIN	15:0	_		—		—			_	—		—	—		INT3F	?<3:0>		0000
FA10	INT4R	31:16		—	—	—	—	—	—	—	—		—	—	-				0000
17110		15:0		—			—	—	—	—	—					INT4F	?<3:0>		0000
FA18	T2CKR	31:16	_	_			—	_		—	—				—		—	_	0000
	-20141	15:0	_	_			—	_		—	—					T2CKI	R<3:0>		0000
FA1C	T3CKR	31:16	—	—			—	—	—	—					—		—	_	0000
		15:0	—	—			—	—	—	—						T3CKI	R<3:0>		0000
FA20	T4CKR	31:16	_	_			—	_	_	_	_	-			—		—	_	0000
		15:0		—	—	—	—	—	—	—			—	—		T4CKI	R<3:0>		0000
FA24	T5CKR	31:16		—		—	—	—	—	—	—							—	0000
17 02 1	Toolar	15:0	—	_			_	_	_	—	—					T5CK	R<3:0>		0000
FA28	IC1R	31:16	—		—	—							—	—			—	—	0000
17120	lont	15:0	—	_			_	_	_	—	—					IC1R	<3:0>		0000
FA2C	IC2R	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17.20	10211	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
FA30	IC3R	31:16	-	—	-	-	—	—	—	—	—		-	-	—	—	—	—	0000
17,00	1001	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
FA 34	IC4R	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
17.04	10413	15:0	_	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
FA38	IC5R	31:16	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—	0000
1,730	10011	15:0	—	—	—	—	—	—		—			—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—		—			—	—	—		—	—	0000
1740		15:0	—	—	—	—	—	—		—			—	—		OCFA	R<3:0>		0000
EA50		31:16	—	—	—	—	—	—		—			—	—	—		—	—	0000
1,430	UINAN	15:0	_	—	—	—	—	—	—	—	—		—	—		U1RX	R<3:0>		0000
EA 54	LIACTER	31:16	_	—	—	—	—	—	—	—	—		—	—	—	—	—	—	0000
FA04	UICISK	15:0	_	—	-	—	_	—	—	—	_	-	-	-		U1CTS	R<3:0>		0000
EAEO		31:16	_	—	—	—	_	—		—	_	—	—	—	—	_	—	—	0000
FAS6	UZKAR	15:0	—	—	-	-	—	—	—	—	—	—	-	—		U2RX	R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

14.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Watchdog Timer (WDT), when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 14-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	-	—	—
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared						
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit					

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision

- Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
- bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

20.1 Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess	- - -									В	its								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_				—	—		—	RDSTART		—				DUALBUF	—	0000
1000	TWICON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
1010	TIMINODE	15:0	BUSY	IRQM	<1:0>	INCM	l<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITM	Л<3:0>		WAITE	<1:0>	0000
		31:16	—	_	—	—	—	—	—		—	—	—	—	—	—	_	—	0000
7020	PMADDR	15:0	CS2	CS1							ADDR	<13:0>							0000
			ADDR15	ADDR14															0000
7030	PMDOUT	31:16		—	_	_	—	_	_		—		_	_	_			_	0000
		15:0					-	-		DATAOL	JT<15:0>		-						0000
7040	PMDIN	31:16	_	_	_	_	—	—	_	_	_	_	_	_	_	_		_	0000
		15:0	DATAIN<15:0> 000													0000			
7050	PMAEN	31:16		—		—	—	—	—	—	—		—	—				—	0000
		15:0								PTEN	<15:0>								0000
7060	PMSTAT	31:16	_	—	_	_	-	—	_		—	—		_	—		—		0000
	_	15:0	IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		—	OB3E	OB2E	OB1E	OB0E	BFBF
		31:16	_	—	—	—	_	—	—	—	—	—		—	—	_	—	_	0000
7070	PMWADDR	15:0	WCS2	WCS1	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
			WADDR15	WADDR14							WADDF	R<13:0>							0000
		31:16	_	—	—	—	—	—	—	—	—	—		—	—				0000
7080	PMRADDR	15:0	RCS2	RCS1			—	—		—	—		—				—	—	0000
			RADDR15	RADDR14							RADDF	R<13:0>							0000
7090	PMRDIN	31:16	31:16	—	—	—	-	—	—	—	—	—	-	—	—	—	—	_	0000
		15:0	15:0 15:0 RDATAIN<15:0> 0000																

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available the Microchip from web site (www.microchip.com/PIC32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed
- Up to 48 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold Amplifier (SHA)
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- · Selectable buffer fill modes
- · Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has up to 28 analog input pins, designated AN0-AN27. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

4: This selection is only used with CTMU capacitive and time measurement.

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN15	MSEL1	5<1:0>	FSEL15<4:0>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN14	MSEL14<1:0>		FSEL14<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	FLTEN13	MSEL13<1:0>		FSEL13<4:0>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN12	MSEL12<1:0>		FSEL12<4:0>					

REGISTER 23-13: C1FLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTE	R 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 8	CTTRIG: Trigger Control bit
	1 = Trigger output is enabled
	0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	•
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	100010
	100001 = Maximum negative change from nominal current
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾
	11 = 100 times base current
	10 = 10 times base current
	01 = Base current level
	00 = 1000 times base current ⁽⁴⁾

- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location		
ADC1	AD1MD	PMD1<0>		
CTMU	CTMUMD	PMD1<8>		
Comparator Voltage Reference	CVRMD	PMD1<12>		
Comparator 1	CMP1MD	PMD2<0>		
Comparator 2	CMP2MD	PMD2<1>		
Comparator 3	CMP3MD	PMD2<2>		
Input Capture 1	IC1MD	PMD3<0>		
Input Capture 2	IC2MD	PMD3<1>		
Input Capture 3	IC3MD	PMD3<2>		
Input Capture 4	IC4MD	PMD3<3>		
Input Capture 5	IC5MD	PMD3<4>		
Output Compare 1	OC1MD	PMD3<16>		
Output Compare 2	OC2MD	PMD3<17>		
Output Compare 3	OC3MD	PMD3<18>		
Output Compare 4	OC4MD	PMD3<19>		
Output Compare 5	OC5MD	PMD3<20>		
Timer1	T1MD	PMD4<0>		
Timer2	T2MD	PMD4<1>		
Timer3	T3MD	PMD4<2>		
Timer4	T4MD	PMD4<3>		
Timer5	T5MD	PMD4<4>		
UART1	U1MD	PMD5<0>		
UART2	U2MD	PMD5<1>		
UART3	U3MD	PMD5<2>		
UART4	U4MD	PMD5<3>		
UART5	U5MD	PMD5<4>		
SPI1	SPI1MD	PMD5<8>		
SPI2	SPI2MD	PMD5<9>		
SPI3	SPI3MD	PMD5<10>		
SPI4	SPI4MD	PMD5<11>		
I2C1	I2C1MD	PMD5<16>		
12C2	I2C2MD	PMD5<17>		
USB ⁽²⁾	USBMD	PMD5<24>		
CAN	CAN1MD	PMD5<28>		
RTCC	RTCCMD	PMD6<0>		
Reference Clock Output	REFOMD	PMD6<1>		
PMP	PMPMD	PMD6<16>		

 Note 1:
 Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
15:8	—	—	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾		—		_
7:0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-1
	_	_	_	_	JTAGEN	_	_	TDOEN

REGISTER 28-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

- bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed
- bit 11-4 Unimplemented: Read as '0'
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 31-13: COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Commen				Comments
D300	VIOFF	Input Offset Voltage	_	±7.5	±25	mV	AVDD = VDD, AVSS = VSS
D301	VICM (2)	Input Common Mode Voltage	0	_	Vdd	V	AVDD = VDD, AVSS = VSS
D302	CMRR ⁽²⁾	Common Mode Rejection Ratio	55		—	dB	Max VICM = (VDD - 1)V
D303	Tresp ^(1,2)	Response Time	—	150	400	ns	AVDD = VDD, AVSS = VSS
D304	ON20√ ⁽²⁾	Comparator Enabled to Output Valid		_	10	μS	Comparator module is configured before setting the comparator ON bit
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	_

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHARACTERISTICS				$ \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	_	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start	
IS50	Св	Bus Capacitive Lo	—	400	pF	—		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

(8) – One TAD for end of conversion.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Condition					
PM1	Tlat	PMALL/PMALH Pulse Width	—	1 Трв	_	_	_	
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	—	—	_	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	_	—	_	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_	
PM5	Trd	PMRD Pulse Width		1 Трв		_	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns		
PM7	Tdhold	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns	_	

TABLE 31-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width		1 Трв	_	_	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	_	_	_

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-40: OTG ELECTRICAL SPECIFICATIONS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation	
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—	
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—	
USB318	VDIFS	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met	
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—	
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—	
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3	
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 k Ω load connected to ground	

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

Overall Width

Overall Length

Lead Thickness

Lead Width

Molded Package Width

Mold Draft Angle Top

Mold Draft Angle Bottom

Molded Package Length

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

Е

D

E1

D1

с

b

α

β

0.09

0.17

11°

11°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

0.20

0.27

13°

13

12.00 BSC

12.00 BSC

10.00 BSC

10.00 BSC

0.22

12°

12°