

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | MIPS32® M4K™                                                                    |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 40MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                   |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                    |
| Number of I/O              | 49                                                                              |
| Program Memory Size        | 512KB (512K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 64K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                     |
| Data Converters            | A/D 28x10b                                                                      |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-TQFP                                                                         |
| Supplier Device Package    | 64-TQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512ht-i-pt |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.



#### FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

#### TABLE 4-1: SFR MEMORY MAP

| Devinheral             | Virtual | Address      |
|------------------------|---------|--------------|
| Peripheral             | Base    | Offset Start |
| Interrupt Controller   |         | 0x1000       |
| Bus Matrix             |         | 0x2000       |
| DMA                    | 0       | 0x3000       |
| USB                    | 0xBF88  | 0x5000       |
| PORTA-PORTG            |         | 0x6000       |
| CAN1                   |         | 0xB000       |
| Watchdog Timer         |         | 0x0000       |
| RTCC                   |         | 0x0200       |
| Timer1-Timer5          |         | 0x0600       |
| IC1-IC5                |         | 0x2000       |
| OC1-OC5                |         | 0x3000       |
| I2C1-I2C2              |         | 0x5000       |
| SPI1-SPI4              |         | 0x5800       |
| UART1-UART5            | 0xBF80  | 0x6000       |
| PMP                    | UXBF80  | 0x7000       |
| ADC1                   |         | 0x9000       |
| DAC                    |         | 0x9800       |
| Comparator 1, 2, 3     |         | 0xA000       |
| Oscillator             |         | 0xF000       |
| Device and Revision ID |         | 0xF200       |
| Flash Controller       |         | 0xF400       |
| PPS                    |         | 0xFA00       |
| Configuration          | 0xBFC0  | 0x0BF0       |

### PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

#### REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits<sup>(1)</sup>

- 1111 = Reserved; do not use
- 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
  - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
  - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

#### 9.1 Control Registers

#### TABLE 9-1: DMA GLOBAL REGISTER MAP

| ess                         |                                 |           |       |               |       |         |         |       |      | Bit  | s    |      |      |      |      |      |          |      | 6          |
|-----------------------------|---------------------------------|-----------|-------|---------------|-------|---------|---------|-------|------|------|------|------|------|------|------|------|----------|------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14         | 29/13 | 28/12   | 27/11   | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1     | 16/0 | All Resets |
| 2000                        | DMACON                          | 31:16     | _     | _             | —     | _       | —       | _     | —    | _    | _    | _    | _    | _    | _    | _    | _        |      | 0000       |
| 3000                        | DIVIACON                        | 15:0      | ON    | —             | _     | SUSPEND | DMABUSY | _     | —    | _    | —    | —    | —    | _    | —    | _    | —        | —    | 0000       |
| 2010                        | DMASTAT                         | 31:16     | _     | —             | _     | _       |         | _     | —    | _    | —    | —    | —    | _    | —    | _    | —        | —    | 0000       |
| 3010                        | DIVIASTAT                       | 15:0      |       | -             | _     | _       | —       | _     | _    | —    | -    | —    | _    | —    | RDWR | C    | MACH<2:0 | >    | 0000       |
| 2020                        | DMAADDR                         | 31:16     |       | DMAADDR<31:0> |       |         |         |       |      |      |      |      | 0000 |      |      |      |          |      |            |
| 3020                        | DIVIAADDR                       | 15:0      |       | 0000          |       |         |         |       |      |      |      |      | 0000 |      |      |      |          |      |            |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

#### TABLE 9-2: DMA CRC REGISTER MAP

| ess                         |                                 | â         |       |                     |       |       |       |           |      | В     | ts        |        |        |      |      |      |          |      |            |
|-----------------------------|---------------------------------|-----------|-------|---------------------|-------|-------|-------|-----------|------|-------|-----------|--------|--------|------|------|------|----------|------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14               | 29/13 | 28/12 | 27/11 | 26/10     | 25/9 | 24/8  | 23/7      | 22/6   | 21/5   | 20/4 | 19/3 | 18/2 | 17/1     | 16/0 | All Resets |
| 2020                        | DCRCCON                         | 31:16     | _     | _                   | BYTO  | <1:0> | WBO   | —         | _    | BITO  | —         | —      | _      | _    | _    | _    | —        | _    | 0000       |
| 3030                        | DURUUUN                         | 15:0      | _     |                     | —     |       |       | PLEN<4:0> |      |       | CRCEN     | CRCAPP | CRCTYP |      | _    | C    | RCCH<2:0 | >    | 0000       |
| 3040                        | DCRCDATA                        | 31:16     |       |                     |       |       |       |           |      |       | TA-21:05  |        |        |      |      |      |          |      | 0000       |
| 3040                        | DCRODAIA                        | 15:0      |       | DCRCDATA<31:0> 0000 |       |       |       |           |      |       |           |        |        |      |      |      |          |      |            |
| 3050                        | DCRCXOR                         | 31:16     |       | DCRCXOR<31:0>       |       |       |       |           |      |       |           |        |        |      |      |      |          |      |            |
| 3030                        | DONOXOR                         | 15:0      |       |                     |       |       |       |           |      | DOROX | JIX-01.02 |        |        |      |      |      |          |      | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

|              |                   |                   |                   | -                 | -                 |                   |                  |                  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
| 24.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 31:24        |                   |                   |                   | DCRCDAT           | 4<31:24>          |                   |                  |                  |
| 00.10        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23:16        |                   |                   |                   | DCRCDAT           | 4<23:16>          |                   |                  |                  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 15:8         |                   |                   |                   | DCRCDAT           | A<15:8>           |                   |                  |                  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          |                   |                   |                   | DCRCDA            | TA<7:0>           |                   |                  |                  |

#### REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER

### Legend:

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

#### bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

#### **REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER**

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 24.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 31:24        |                   |                   |                   | DCRCXOF           | <31:24>           |                   |                  |                  |  |  |  |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 23:16        |                   |                   |                   | DCRCXOF           | <23:16>           |                   |                  |                  |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15:8         |                   |                   |                   | DCRCXO            | R<15:8>           |                   |                  |                  |  |  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7:0          | DCRCXOR<7:0>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented b  | it, read as '0'    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

#### TABLE 10-1: USB REGISTER MAP (CONTINUED)

| ess                         |                                 | 6         |       |       |       |       |       |       |      |      | Bi    | ts       |       |          |         |        |           |          |            |
|-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|-------|----------|-------|----------|---------|--------|-----------|----------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7  | 22/6     | 21/5  | 20/4     | 19/3    | 18/2   | 17/1      | 16/0     | All Resets |
| 5280                        | U1FRML <sup>(3)</sup>           | 31:16     | _     | _     | _     | _     | _     | _     | _    |      | _     | —        | _     | —        | _       | —      | —         |          | 0000       |
| 5260                        |                                 | 15:0      |       |       | _     |       | —     | —     | —    | —    |       |          |       | FRML<    | 7:0>    |        |           |          | 0000       |
| 5290                        | U1FRMH <sup>(3)</sup>           | 31:16     | -     | _     | -     | _     | _     | _     | _    | _    | _     | —        | —     | —        | _       | -      | —         |          | 0000       |
| 5290                        | OT RMIR /                       | 15:0      | _     | —     | _     | —     | —     | —     | _    | —    | —     | —        | —     | —        | —       |        | FRMH<2:0> | >        | 0000       |
| 52A0                        | U1TOK                           | 31:16     |       | —     | _     | —     | —     | —     | —    | —    | _     | _        | _     |          | —       |        | -         | —        | 0000       |
| 5270                        | UTION                           | 15:0      | _     | —     |       | —     | —     | —     | —    | —    |       | PID      | <3:0> |          |         | EP     | ><3:0>    |          | 0000       |
| 52B0                        | U1SOF                           | 31:16     |       | _     | _     | _     | _     | _     | _    | _    | _     | —        | _     | —        | _       | _      | _         |          | 0000       |
| 52BU                        | 0130F                           | 15:0      |       | _     |       | _     | _     | _     | _    | _    |       |          |       | CNT<7    | /:0>    | -      | •         |          | 0000       |
| 52C0                        | U1BDTP2                         | 31:16     | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | —        | —       | _      | —         |          | 0000       |
| 5200                        | OIBDIF2                         | 15:0      | _     |       | _     |       | —     | —     | _    |      |       |          |       | BDTPTRH  | <23:16> |        |           |          | 0000       |
| 52D0                        | U1BDTP3                         | 31:16     | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | —        | —       | _      | —         |          | 0000       |
| 5200                        | OIBDIF5                         | 15:0      | _     |       | _     |       | —     | —     | _    |      |       |          |       | BDTPTRU  | <31:24> |        |           |          | 0000       |
| 52E0                        | U1CNFG1                         | 31:16     | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | —        | —       | _      | —         |          | 0000       |
| 52L0                        | UICNIGI                         | 15:0      | _     |       | _     |       | —     | —     | _    |      | UTEYE | —        | _     | USBSIDL  | LSDEV   | _      | —         | UASUSPND | 0000       |
| 5300                        | U1EP0                           | 31:16     | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | —        | —       | _      | —         |          | 0000       |
| 5500                        | UILFU                           | 15:0      | _     |       | _     |       | —     | —     | _    |      | LSPD  | RETRYDIS | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5310                        | U1EP1                           | 31:16     | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | —        | —       | _      | —         |          | 0000       |
| 5510                        | UILFI                           | 15:0      | _     |       | _     |       | —     | —     | _    |      | _     | —        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5320                        | U1EP2                           | 31:16     | _     |       | _     |       | —     | —     | —    |      | _     | —        | —     | —        | —       | _      | —         |          | 0000       |
| 5520                        | UILFZ                           | 15:0      |       |       |       |       | _     | _     | _    | _    | _     | _        | —     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5330                        | U1EP3                           | 31:16     | _     | —     | _     | —     | —     | —     | _    | —    | —     | —        | —     | —        | —       | —      | —         | _        | 0000       |
| 0000                        | 01EI 3                          | 15:0      |       | —     | _     | —     | —     | —     | —    | —    | _     | _        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5340                        | U1EP4                           | 31:16     | _     | _     | _     | _     | —     | —     | —    | —    | —     | —        | —     | _        | —       | —      | —         | _        | 0000       |
| 0040                        | 01214                           | 15:0      |       | —     | _     | —     | —     | —     | —    | —    | _     | _        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5350                        | U1EP5                           | 31:16     | _     | _     | _     | _     | —     | —     | —    | —    | —     | —        | —     | _        | —       | —      | —         | _        | 0000       |
| 0000                        | 01EI 5                          | 15:0      |       | —     | _     | —     | —     | —     | —    | —    | _     | _        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5360                        | U1EP6                           | 31:16     | _     | —     |       | —     | —     | —     | —    | —    | —     | —        | _     | _        | —       | —      | —         | —        | 0000       |
| 5500                        | 01L10                           | 15:0      | -     | _     | -     | —     | _     | —     | —    |      | _     | —        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5370                        | U1EP7                           | 31:16     | _     | —     | _     | —     | —     | —     | —    | —    | —     | -        | _     | —        | —       | —      | -         | —        | 0000       |
| 5570                        |                                 | 15:0      | -     | —     | -     | —     | _     | _     | —    | —    | —     | —        | _     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |
| 5380                        | U1EP8                           | 31:16     | _     | —     | _     | —     | —     | —     | —    | —    | —     | —        | _     | —        | —       | —      | -         | —        | 0000       |
| 5500                        |                                 | 15:0      | -     | _     | -     | _     | —     | —     | _    | —    | _     | —        | —     | EPCONDIS | EPRXEN  | EPTXEN | EPSTALL   | EPHSHK   | 0000       |

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

DS60001290D-page 108

### PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

#### REGISTER 10-10: U1STAT: USB STATUS REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | _                 | _                 |                   |                   | —                 |                   | _                | —                |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        |                   | _                 |                   |                   | —                 |                   |                  | _                |
| 15:8         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 10.0         | _                 | _                 |                   |                   | —                 |                   | _                | —                |
| 7:0          | R-x               | R-x               | R-x               | R-x               | R-x               | R-x               | U-0              | U-0              |
| 7.0          |                   | ENDP              | T<3:0>            |                   | DIR               | PPBI              |                  | —                |

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

#### bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
  - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
  - 1 = Last transaction was a transmit transfer (TX)
  - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
  - 1 = The last transaction was to the ODD BD bank
  - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

**Note:** The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

#### TABLE 11-1: INPUT PIN SELECTION

| [pin name]R SFR      | [pin name]R bits                                                                                                                                                                                                                                                                                                                                                                               | [ <i>pin name</i> ]R Value to<br>RPn Pin Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| INT3R                | INT3R<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0000 = RPD2<br>0001 = RPG8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| T2CKR                | T2CKR<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0010 = RPF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| IC3R                 | IC3R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| U1RXR                | U1RXR<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0101 = RPB9<br>0110 = RPB10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| U2RXR                | U2RXR<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0111 = RPC14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| U5CTSR               | U5CTSR<3:0>                                                                                                                                                                                                                                                                                                                                                                                    | 1000 = RPB5 <sup>(7)</sup><br>1001 = Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| SDI3R                | SDI3R<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 1010 = RPC1 <sup>(3)</sup><br>1011 = RPD14 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| SDI4R                | SDI4R<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 1100 = RPG1 <sup>(3)</sup><br>1101 = RPA14 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| REFCLKIR             | REFCLKIR<3:0>                                                                                                                                                                                                                                                                                                                                                                                  | 1110 = Reserved<br>1111 = RPF2 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| INT4R                | INT4R<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0000 <b>= RPD3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| T5CKR                | T5CKR<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0001 = RPG7<br>0010 = RPF5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                | 0011 = RPD11<br>0100 = RPF0<br>0101 = RPB1<br>0110 = RPE5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                | 0111 = RPC13<br>1000 = RPB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                | 1001 = RPF12 <sup>(3)</sup><br>1010 = RPC4 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                | 1011 = RPD15 <sup>(3)</sup><br>1100 = RPG0 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                | 1101 = RPA15 <sup>(3)</sup><br>1110 = RPF2 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| C1RXR <sup>(5)</sup> | C1RXR<3:0> <sup>(5)</sup>                                                                                                                                                                                                                                                                                                                                                                      | 1110 = R(F2(2)<br>1111 = RPF7 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| INT2R                | INT2R<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0000 = RPD9<br>0001 = RPG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| T4CKR                | T4CKR<3:0>                                                                                                                                                                                                                                                                                                                                                                                     | 0010 = RPB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| IC2R                 | IC2R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| IC5R                 | IC5R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      | 0101 = RPB0<br>0110 = RPE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| U1CTSR               | U1CTSR<3:0>                                                                                                                                                                                                                                                                                                                                                                                    | 0111 = RPB7<br>1000 = Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| U2CTSR               | U2CTSR<3:0>                                                                                                                                                                                                                                                                                                                                                                                    | 1001 = RPF12 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| SS1R                 | SS1R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      | 1010 = RPD12 <sup>(3)</sup><br>1011 = RPF8 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| SS3R                 | SS1R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      | 1100 = RPC3 <sup>(3)</sup><br>1101 = RPE9 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| SS3R                 | SS3R<3:0>                                                                                                                                                                                                                                                                                                                                                                                      | 1110 = RPD14 <sup>(3)</sup><br>1111 = RPB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                      | INT3R           T2CKR           IC3R           U1RXR           U2RXR           U5CTSR           SDI3R           SDI4R           REFCLKIR           INT4R           U3RXR           U4CTSR           SDI1R           SDI2R           U4CTSR           SDI2R           U1RXR <sup>(5)</sup> INT2R           INT2R           U1CTSR           U2RXR           U2RXR           SS1R           SS1R | INT3R         INT3R           IZCKR         T2CKR           IC3R         IC3R           IC3R         IC3R           U1RXR         U1RXR           U2RXR         U2RXR           U5CTSR         U5CTSR           SDI3R         SDI3R           SDI3R         SDI3R           SDI4R         SDI4R           SDI4R         SDI4R           SDI4R         SDI4R           INT4R         INT4R           INT4R         INT4R           INT4R         INT4R           INT4R         INT4R           INT4R         IAT4           INT4R         IAT4           IV3RXR         U3RXR           U3RXR         U3RXR           U4CTSR         U4CTSR           U4CTSR         SDI1R           U4CTSR         SDI2R           SDI2R         SDI2R           SDI2R         SDI2R           SDI2R         SDI2R           INT2R         INT2R           INT2R         IC2R           IC2R         IC2R           IC2R         IC2R           IC5R         IC5R           IV1CTSR |  |  |  |  |  |

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

**3:** This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

#### 11.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 11-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

#### FIGURE 11-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0



## 11.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

#### 11.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

#### 11.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

#### 12.2 **Control Registers**

#### TABLE 12-1: TIMER1 REGISTER MAP

| ess                         |                                 | Bits      |       |       |       |       |       |       |      |      |        |      | ú    |        |      |       |      |      |           |
|-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|--------|------|------|--------|------|-------|------|------|-----------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7   | 22/6 | 21/5 | 20/4   | 19/3 | 18/2  | 17/1 | 16/0 | All Reset |
| 0600                        | T1CON                           | 31:16     | _     | _     | —     | _     | _     | —     | _    | —    | -      | —    | _    | _      | —    | _     | _    | _    | 0000      |
| 0000                        | TICON                           | 15:0      | ON    | —     | SIDL  | TWDIS | TWIP  | —     | —    | —    | TGATE  | —    | TCKP | S<1:0> | _    | TSYNC | TCS  | —    | 0000      |
| 0610                        | TMR1                            | 31:16     |       | —     | —     | —     | —     | —     | —    | —    | —      | —    | —    | —      | _    | —     | —    | —    | 0000      |
| 0010                        |                                 | 15:0      |       |       |       |       |       |       |      | TMR1 | <15:0> |      |      |        |      |       |      |      | 0000      |
| 0620                        | PR1                             | 31:16     | _     | -     | _     | -     | -     | —     | -    | _    | —      | _    | _    | _      |      | —     | _    | _    | 0000      |
| 0020                        | FIXT                            | 15:0      |       |       |       |       |       |       |      | PR1< | :15:0> |      |      |        |      |       |      |      | FFFF      |

Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

#### 15.1 Control Registers

#### TABLE 15-1: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 5 REGISTER MAP

| ess                         |                       | â         |       |       |       |       |       |       |       | Bi     | ts     |      |      |      |       |      |          |      |            |
|-----------------------------|-----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--------|--------|------|------|------|-------|------|----------|------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name      | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9  | 24/8   | 23/7   | 22/6 | 21/5 | 20/4 | 19/3  | 18/2 | 17/1     | 16/0 | All Resets |
| 2000                        | IC1CON <sup>(1)</sup> | 31:16     | _     | —     | —     | —     | —     | _     | —     | _      | —      | —    | —    | _    |       |      | _        |      | 0000       |
| 2000                        | 101001                | 15:0      | ON    | —     | SIDL  | —     | —     | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000       |
| 2010                        | IC1BUF                | 31:16     |       |       |       |       |       |       |       | IC1BUF | <31:0> |      |      |      |       |      |          |      | xxxx       |
|                             |                       | 15:0      |       |       |       |       |       |       |       |        |        |      |      |      |       |      |          |      | xxxx       |
| 2200                        | IC2CON <sup>(1)</sup> | 31:16     | —     | —     | —     | —     | —     | _     | —     | —      | —      | —    |      | —    | —     | —    | —        | —    | 0000       |
|                             |                       | 15:0      | ON    |       | SIDL  | _     |       | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000       |
| 2210                        | IC2BUF                | 31:16     |       |       |       |       |       |       |       | IC2BUF | <31:0> |      |      |      |       |      |          |      | XXXX       |
|                             |                       | 15:0      |       |       |       |       |       |       |       |        |        |      |      |      |       |      |          |      | xxxx       |
| 2400                        | IC3CON <sup>(1)</sup> | 31:16     | -     |       | -     | _     |       | _     | —     | -      | —      | -    | —    | —    | —     | —    | —        |      | 0000       |
|                             |                       | 15:0      | ON    |       | SIDL  | _     |       | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000       |
| 2410                        | IC3BUF                | 31:16     |       |       |       |       |       |       |       | IC3BUF | <31:0> |      |      |      |       |      |          |      | XXXX       |
|                             |                       | 15:0      |       |       |       |       |       |       |       |        |        |      |      | 1    | 1     |      |          |      | XXXX       |
| 2600                        | IC4CON <sup>(1)</sup> | 31:16     | -     | _     | -     | _     | _     |       | -     | _      | -      | -    | —    | -    | -     | —    | —        | —    | 0000       |
|                             |                       | 15:0      | ON    |       | SIDL  |       |       | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000       |
| 2610                        | IC4BUF                | 31:16     |       |       |       |       |       |       |       | IC4BUF | <31:0> |      |      |      |       |      |          |      | xxxx       |
|                             |                       | 15:0      |       |       |       |       |       |       |       |        |        |      |      | 1    | 1     |      |          |      | XXXX       |
| 2800                        | IC5CON <sup>(1)</sup> | 31:16     | -     |       | -     |       |       |       | -     |        | -      | -    |      | -    |       | _    | —        | _    | 0000       |
|                             |                       | 15:0      | ON    | _     | SIDL  | —     | —     | _     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000       |
| 2810                        | IC5BUF                | 31:16     |       |       |       |       |       |       |       | IC5BUF | <31:0> |      |      |      |       |      |          |      | XXXX       |
|                             |                       | 15:0      |       |       |       |       |       |       |       |        |        |      |      |      |       |      |          |      | XXXX       |

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |
| 00:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15:8         |                   |                   |                   | DATAOUT           | <15:8>            |                   |                  |                  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
|              | DATAOUT<7:0>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |

#### REGISTER 20-4: PMDOUT: PARALLEL PORT OUTPUT DATA REGISTER

#### Legend:

| 9                 |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

#### bit 15-0 DATAOUT<15:0>: Port Data Output bits

This register is used for Read operations in the Enhanced Parallel Slave mode and Write operations for Dual Buffer Master mode.

In Dual Buffer Master mode, the DUALBUF bit (PMPCON<17>) = 1, a write to the MSB triggers the transaction on the PMP port. When MODE16 = 1, MSB = DATAOUT<15:8>. When MODE16 = 0, MSB = DATAOUT<7:0>.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |
| 31.24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |  |  |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |  |  |
| 15:8         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 15.0         |                   |                   |                   | DATAIN<           | 15:8>             |                   |                  |                  |  |  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
|              | DATAIN<7:0>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |

#### REGISTER 20-5: PMDIN: PARALLEL PORT INPUT DATA REGISTER

#### Legend:

| 9                 |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAIN<15:0>: Port Data Input bits

This register is used for both Parallel Master Port mode and Enhanced Parallel Slave mode. In Parallel Master mode, a write to the MSB triggers the write transaction on the PMP port. Similarly, a read to the MSB triggers the read transaction on the PMP port. When MODE16 = 1, MSB = DATAIN<15:8>. When MODE16 = 0, MSB = DATAIN<7:0>.

Note: This register is not used in Dual Buffer Master mode (i.e., DUALBUF bit (PMPCON<17>) = 1).

**Note:** In Master mode, a read will return the last value written to the register. In Slave mode, a read will return indeterminate results.

#### TABLE 23-1: CAN1 REGISTER SUMMARY (CONTINUED)

| ess                         |            | Range         |       |        |       |       |       |           |          | Bits      | ;      |        |        |       |          |            |          |                |            |
|-----------------------------|------------|---------------|-------|--------|-------|-------|-------|-----------|----------|-----------|--------|--------|--------|-------|----------|------------|----------|----------------|------------|
| Virtual Address<br>(BF88_#) |            |               | 31/15 | 30/14  | 29/13 | 28/12 | 27/11 | 26/10     | 25/9     | 24/8      | 23/7   | 22/6   | 21/5   | 20/4  | 19/3     | 18/2       | 17/1     | 16/0           | All Resets |
| B340                        | C1FIFOBA   | 31:16<br>15:0 |       |        |       |       |       |           |          | C1FIFOBA  | <31:0> |        |        |       |          |            |          |                | 0000       |
| B350                        | C1FIFOCONn | 31:16         |       | _      |       | _     | _     | _         | _        | _         | —      | _      | _      |       | ŀ        | SIZE<4:0>  |          |                | 0000       |
| D000                        | (n = 0-15) | 15:0          | _     | FRESET | UINC  | DONLY | _     | —         | —        | —         | TXEN   | TXABAT | TXLARB | TXERR | TXREQ    | RTREN      | TXPRI    | <1:0>          | 0000       |
| B360                        | C1FIFOINTn | 31:16         | _     | -      | -     | —     | —     | TXNFULLIE | TXHALFIE | TXEMPTYIE | —      | —      | —      | —     | RXOVFLIE | RXFULLIE   | RXHALFIE | RXN<br>EMPTYIE | 0000       |
| B300                        | (n = 0-15) | 15:0          | _     | -      | Ι     | -     | _     | TXNFULLIF | TXHALFIF | TXEMPTYIF | _      | —      | _      | —     | RXOVFLIF | RXFULLIF   | RXHALFIF | RXN<br>EMPTYIF | 0000       |
| B370                        | C1FIFOUAn  | 31:16         |       |        |       |       |       |           |          | C1FIFOUA  | <21.0> |        |        |       |          |            |          |                | 0000       |
| 6370                        | (n = 0-15) | 15:0          |       |        |       |       |       |           |          | CIFIFUUA  | ×31.0> |        |        |       |          |            |          |                | 0000       |
| B380                        | C1FIFOCIn  | 31:16         |       | _      | _     | _     |       | —         |          | _         | —      | —      | -      |       | _        | _          | _        |                | 0000       |
| 5300                        | (n = 0-15) | 15:0          | -     | —      |       |       | _     | -         | -        |           | —      | —      | _      |       | C1       | FIFOCIn<4: | 0>       |                | 0000       |

Legend: Note 1 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more 1: information.

# PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 31:24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 31.24        | SID<10:3>         |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 23:16        | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0             | U-0               | R/W-0            | R/W-0            |  |  |  |  |  |
| 23.10        |                   | SID<2:0>          |                   | —                 | MIDE              | _                 | EID<'            | 17:16>           |  |  |  |  |  |
| 15:8         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 15.0         | EID<15:8>         |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 7.0          |                   |                   |                   | EID<7             | 7:0>              |                   |                  |                  |  |  |  |  |  |

#### REGISTER 23-9: C1RXMn: CAN ACCEPTANCE FILTER MASK 'n' REGISTER (n = 0, 1, 2 OR 3)

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include the SIDx bit in filter comparison
- 0 = The SIDx bit is a 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
  - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
  - Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))

#### bit 18 Unimplemented: Read as '0'

- bit 17-0 EID<17:0>: Extended Identifier bits
  - 1 = Include the EIDx bit in filter comparison
  - 0 = The EIDx bit is a 'don't care' in filter operation

**Note:** This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

| DC CHARACT       | ERISTICS               |               | (unless oth  | •                   | s: 2.3V to 3.6V<br>≤ TA ≤ +85°C for Indu<br>≤ TA ≤ +105°C for V-te |  |  |  |
|------------------|------------------------|---------------|--------------|---------------------|--------------------------------------------------------------------|--|--|--|
| Parameter<br>No. | Typical <sup>(2)</sup> | Max.          | Units        |                     | Conditions                                                         |  |  |  |
| Idle Current (II | DLE): Core Of          | f, Clock on E | Base Current | (Notes 1, 4)        |                                                                    |  |  |  |
| DC30a            | 1.5                    | 5             | mA           | 4 MHz (Note 3)      |                                                                    |  |  |  |
| DC31a            | 3                      | 8             | mA           |                     | 10 MHz                                                             |  |  |  |
| DC32a            | 5                      | 12            | mA           |                     | 20 MHz (Note 3)                                                    |  |  |  |
| DC33a            | 6.5                    | 15            | mA           |                     | 30 MHz (Note 3)                                                    |  |  |  |
| DC34a            | 8                      | 20            | mA           | 40 MHz              |                                                                    |  |  |  |
| DC37a            | 75                     | 100           | μA           | -40°C LPRC (31 kHz) |                                                                    |  |  |  |
| DC37b            | 180                    | 250           | μA           | +25°C 3.3V (Note 3) |                                                                    |  |  |  |
| DC37c            | 280                    | 380           | μA           | μA +85°C            |                                                                    |  |  |  |

#### TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

**Note 1:** The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)</li>
 OSC2/CLKO is configured as an I/O input pin

- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1  $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

|               | ARACTER |                                                         | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) |                        |            |       |                                                   |  |  |  |
|---------------|---------|---------------------------------------------------------|-----------------------------------------------------------------------|------------------------|------------|-------|---------------------------------------------------|--|--|--|
|               |         |                                                         | Operating tempe                                                       |                        |            |       | C for Industrial<br>C for V-temp                  |  |  |  |
| Param.<br>No. | Symbol  | Characteristics                                         | Min.                                                                  | Typical <sup>(1)</sup> | Max.       | Units | Conditions                                        |  |  |  |
|               | VIL     | Input Low Voltage                                       |                                                                       |                        |            |       |                                                   |  |  |  |
| DI10          |         | I/O Pins with PMP                                       | Vss                                                                   | —                      | 0.15 Vdd   | V     |                                                   |  |  |  |
|               |         | I/O Pins                                                | Vss                                                                   | —                      | 0.2 Vdd    | V     |                                                   |  |  |  |
| DI18          |         | SDAx, SCLx                                              | Vss                                                                   | —                      | 0.3 VDD    | V     | SMBus disabled<br>(Note 4)                        |  |  |  |
| DI19          |         | SDAx, SCLx                                              | Vss                                                                   | —                      | 0.8        | V     | SMBus enabled<br>(Note 4)                         |  |  |  |
|               | VIH     | Input High Voltage                                      |                                                                       |                        |            |       |                                                   |  |  |  |
| DI20          |         | I/O Pins not 5V-tolerant <sup>(5)</sup>                 | 0.65 VDD                                                              | _                      | Vdd        | V     | (Note 4,6)                                        |  |  |  |
|               |         | I/O Pins 5V-tolerant with<br>PMP <sup>(5)</sup>         | 0.25 VDD + 0.8V                                                       | —                      | 5.5        | V     | (Note 4,6)                                        |  |  |  |
|               |         | I/O Pins 5V-tolerant <sup>(5)</sup>                     | 0.65 VDD                                                              | —                      | 5.5        | V     |                                                   |  |  |  |
| DI28          |         | SDAx, SCLx                                              | 0.65 VDD                                                              | —                      | 5.5        | V     | SMBus disabled<br>(Note 4,6)                      |  |  |  |
| DI29          |         | SDAx, SCLx                                              | 2.1                                                                   | _                      | 5.5        | V     | SMBus enabled,<br>2.3V ≤ VPIN ≤ 5.5<br>(Note 4,6) |  |  |  |
| DI30          | ICNPU   | Change Notification<br>Pull-up Current                  | _                                                                     | -200                   | -50        | μA    | VDD = 3.3V, VPIN = VSS<br>(Note 3,6)              |  |  |  |
| DI31          | ICNPD   | Change Notification<br>Pull-down Current <sup>(4)</sup> | 50                                                                    | 200                    | —          | μA    | VDD = 3.3V, VPIN = VDD                            |  |  |  |
|               | lı∟     | Input Leakage Current<br>(Note 3)                       |                                                                       |                        |            |       |                                                   |  |  |  |
| DI50          |         | I/O Ports                                               | _                                                                     | —                      | <u>+</u> 1 | μA    | $Vss \le VPIN \le VDD,$<br>Pin at high-impedance  |  |  |  |
| DI51          |         | Analog Input Pins                                       | -                                                                     | _                      | <u>+</u> 1 | μA    | $Vss \le VPIN \le VDD,$<br>Pin at high-impedance  |  |  |  |
| DI55          |         | MCLR <sup>(2)</sup>                                     | _                                                                     | _                      | <u>+</u> 1 | μA    | $VSS \le VPIN \le VDD$                            |  |  |  |
| DI56          |         | OSC1                                                    | -                                                                     | —                      | <u>+</u> 1 | μΑ    | $VSS \le VPIN \le VDD,$ XT and HS modes           |  |  |  |

#### TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

| TABLE 31-32: | <b>I2Cx BUS DATA</b> | TIMING REQUIREMENTS | (MASTER MODE) | (CONTINUED) |
|--------------|----------------------|---------------------|---------------|-------------|
|              |                      |                     | (             | (•••••••••  |

| AC CHARACTERISTICS |         |                              |                        | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |      |       |                                        |
|--------------------|---------|------------------------------|------------------------|-------------------------------------------------------|------|-------|----------------------------------------|
| Param.<br>No.      | Symbol  | Characteristics              |                        | Min. <sup>(1)</sup>                                   | Max. | Units | Conditions                             |
| IM40               | TAA:SCL | L Output Valid<br>from Clock | 100 kHz mode           | —                                                     | 3500 | ns    | —                                      |
|                    |         |                              | 400 kHz mode           | —                                                     | 1000 | ns    | —                                      |
|                    |         |                              | 1 MHz mode<br>(Note 2) | —                                                     | 350  | ns    | —                                      |
| IM45               | TBF:SDA | A Bus Free Time              | 100 kHz mode           | 4.7                                                   | _    | μS    | The amount of time the                 |
|                    |         |                              | 400 kHz mode           | 1.3                                                   | —    | μS    | bus must be free                       |
|                    |         |                              | 1 MHz mode<br>(Note 2) | 0.5                                                   | —    | μS    | before a new<br>transmission can start |
| IM50               | Св      | Bus Capacitive Loading       |                        | —                                                     | 400  | pF    | —                                      |
| IM51               | Tpgd    | Pulse Gobbler Delay          |                        | 52                                                    | 312  | ns    | See Note 3                             |

**Note 1:** BRG is the value of the  $I^2C$  Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**3:** The typical value for this parameter is 104 ns.

| AC CHARACTERISTICS |                               |                                   | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |              |      |       |                                                         |
|--------------------|-------------------------------|-----------------------------------|-------------------------------------------------------|--------------|------|-------|---------------------------------------------------------|
| Param.<br>No.      | Symbol                        | Characteristics                   | Min.                                                  | Typical      | Max. | Units | Conditions                                              |
| ADC Ac             | curacy – N                    | leasurements with Inter           | nal VREF+/                                            | REF-         |      |       |                                                         |
| AD20d              | Nr                            | Resolution                        |                                                       | 10 data bits | 3    | bits  | (Note 3)                                                |
| AD21d              | INL                           | Integral Non-linearity            | > -1                                                  | -            | < 1  | LSb   | VINL = AVSS = 0V,<br>AVDD = 2.5V to 3.6V<br>(Note 3)    |
| AD22d              | DNL                           | Differential Non-linearity        | > -1                                                  |              | < 1  | LSb   | VINL = AVSS = 0V,<br>AVDD = 2.5V to 3.6V<br>(Notes 2,3) |
| AD23d              | Gerr                          | Gain Error                        | > -4                                                  | —            | < 4  | LSb   | VINL = AVSS = 0V,<br>AVDD = 2.5V to 3.6V<br>(Note 3)    |
| AD24d              | EOFF                          | Offset Error                      | > -2                                                  | -            | < 2  | Lsb   | VINL = AVSS = 0V,<br>AVDD = 2.5V to 3.6V<br>(Note 3)    |
| AD25d              |                               | Monotonicity                      | —                                                     |              | _    | —     | Guaranteed                                              |
| Dynami             | c Performa                    | ance                              |                                                       |              |      |       |                                                         |
| AD32b              | SINAD                         | Signal to Noise and<br>Distortion | 55                                                    | 58.5         | _    | dB    | (Notes 3,4)                                             |
| AD34b              | ENOB Effective Number of bits |                                   | 9.0                                                   | 9.5          | _    | bits  | (Notes 3,4)                                             |

**Note 1:** These parameters are not characterized or tested in manufacturing.

**2:** With no missing codes.

**3:** These parameters are characterized, but not tested in manufacturing.

**4:** Characterized with a 1 kHz sine wave.

**5:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

#### 32.1 DC Characteristics

#### TABLE 32-1: OPERATING MIPS VS. VOLTAGE

|                | Voo Bango                              | Temp. Range    | Max. Frequency                          |  |  |
|----------------|----------------------------------------|----------------|-----------------------------------------|--|--|
| Characteristic | VDD Range<br>(in Volts) <sup>(1)</sup> | (in °C)        | PIC32MX1XX/2XX/5XX 64/100-pin<br>Family |  |  |
| MDC5           | VBOR-3.6V                              | -40°C to +85°C | 50 MHz                                  |  |  |

**Note 1:** Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

#### TABLE 32-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

| DC CHARACTERISTICS                  |                        |      | Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |            |  |  |
|-------------------------------------|------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Parameter<br>No.                    | Typical <sup>(3)</sup> | Max. | Units                                                                                                                                           | Conditions |  |  |
| Operating Current (IDD) (Note 1, 2) |                        |      |                                                                                                                                                 |            |  |  |
| MDC24                               | 25                     | 40   | mA                                                                                                                                              | 50 MHz     |  |  |

**Note 1:** A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)</li>
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- CPU executing while(1) statement from Flash
- **3:** RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.