

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512ht-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber												
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description									
RF0	58	87	I/O	ST										
RF1	59	88	I/O	ST										
RF2	34 ⁽³⁾	52	I/O	ST										
RF3	33	51	I/O	ST										
RF4	31	49	I/O	ST										
RF5	32	50	I/O	ST	PORTF is a bidirectional I/O port									
RF6	35(1)	55 ⁽¹⁾	I/O	ST										
RF7	_	54 (4)	I/O	ST										
RF8	_	53	I/O	ST										
RF12	_	40	I/O	ST										
RF13	_	39	I/O	ST										
RG0	_	90	I/O	ST										
RG1	_	89	I/O	ST										
RG2	37(1)	57 ⁽¹⁾	I/O	ST	-									
RG3	36 ⁽¹⁾	56 ⁽¹⁾	I/O	ST										
RG6	4	10	I/O	ST										
RG7	5	11	I/O	ST										
RG8	6	12	I/O	ST	PORTG is a bidirectional I/O port									
RG9	8	14	I/O	ST										
RG12	_	96	I/O	ST	-									
RG13	_	97	I/O	ST										
RG14	_	95	I/O	ST										
RG15	_	1	I/O	ST	-									
T1CK	48	74	I	ST	Timer1 External Clock Input									
T2CK	PPS	PPS	I	ST	Timer2 External Clock Input									
T3CK	PPS	PPS	Ι	ST	Timer3 External Clock Input									
T4CK	PPS	PPS	I	ST	Timer4 External Clock Input									
T5CK	PPS	PPS	I	ST	Timer5 External Clock Input									
U1CTS	PPS	PPS	I	ST	UART1 Clear to Send									
U1RTS	PPS	PPS	0		UART1 Ready to Send									
U1RX	PPS	PPS	I	ST	UART1 Receive									
U1TX	PPS	PPS	0		UART1 Transmit									
U2CTS	PPS	PPS	I	ST	UART2 Clear to Send									
U2RTS	PPS	PPS	0		UART2 Ready to Send									
U2RX	PPS	PPS	I	ST	UART2 Receive									
U2TX	PPS	PPS	0		UART2 Transmit									
Legend:	CMOS = CM ST = Schmit	IOS compat	ible inpu ut with (it or output CMOS leve	Analog = Analog input I = Input O = Output Is TTL = TTL input buffer P = Power									

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber	Pin	Buffer								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description							
MCLR	7	13	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.							
AVdd	19	30	Р	Р	Positive supply for analog modules. This pin must be connected at all times.							
AVss	20	31	Р	Р	Ground reference for analog modules							
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	Р	_	Positive supply for peripheral logic and I/O pins							
VCAP	56	85	Р	_	Capacitor for Internal Voltage Regulator							
Vss	9, 25, 41	15, 36, 45, 65, 75	Р	_	Ground reference for logic and I/O pins							
VREF+	16	29	Р	Analog	Analog Voltage Reference (High) Input							
VREF-	15	28	Р	Analog	Analog Voltage Reference (Low) Input							
Legend:	CMOS = CM	10S compati	ble inpu	it or output	Analog = Analog input I = Input O = Output							

Legend: CMOS = CMOS compatible input or output Analog = Analog input I = Input ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—	—	—	—	—	—	—	—						
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23.10	—	—	—	—	—	—	—	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	CHSSIZ<15:8>													
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				CHSSIZ	<7:0>									

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	CHDSIZ<15:8>												
7:0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				CHDSIZ	<u>/</u> <7:0>								

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

-																			
ess										Bi	ts								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_	—	—	—	—	—	—	—		_		—	—	_	—	_	0000
		15:0	_	_	_	_	_	_	_	_	_	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	007F
6520	PORTE	31:16	—		—		—	_		—	—	-		—		_	_		0000
		15:0	—	_	—	_	—	_	_	—	_	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530		31:16	—	_	—	_	_	—	_	—	_	—	_	_		_	_	—	0000
0000	L/(II	15:0	—	_	—	_	—	_	_	_	_	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
0540	ODCE	31:16		-	-	-	—	-	-			—		-	—	-	-	—	0000
0540	ODCF	15:0		_	_	_	_	_	_	—	_	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
0550		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6550	CNPUF	15:0	_		_		_	-		—		CNPUF6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
0500		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0000	CNPDF	15:0	_	_	_	_	_	_	_	_	_	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570		31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
0570	CINCOINF	15:0	ON	_	SIDL	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0500		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_	_	—	0000
6580	CNENF	15:0	_	_	_	_	—	_	_	_	_	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	0000
6590	CNSTATF	15:0	_		_		_		_			CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-13: PORTF REGISTER MAP FOR PIC32MX120F064H, PIC32MX130F128H, PIC32MX150F256H, AND PIC32MX170F512H DEVICES ONLY

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Control Registers 13.2

TABLE 13-1: TIMER2 THROUGH TIMER5 REGISTER MAP

ess										В	its								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	TOCON	31:16		—	_	—	—	_	_	—	_	_	—	_	—	_	—	_	0000
0000	12001	15:0	ON	_	SIDL	—	_			_	TGATE		TCKPS<2:0	>	T32	—	TCS		0000
0010	TMD2	31:16		_	_	_	_			_	_		—	_	—	_	_		0000
0010	TIVIRZ	15:0								TMR2	<15:0>								0000
0020	002	31:16		_	_	_	_			_	_		—	_	—	_	_		0000
0620	FRZ	15:0								PR2<	:15:0>								FFFF
0400		31:16	_	_	_	_	_			—	_	-	_	_	—	_	_		0000
UAUU	13CON	15:0	ON	_	SIDL	_	_	_	_	_	TGATE	-	TCKPS<2:0	>	—	_	TCS	_	0000
0.4.10		31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
UATU	TWRS	15:0								TMR3	<15:0>								0000
0420	002	31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
UAZU	PRS	15:0								PR3<	:15:0>								FFFF
0000	TACON	31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
0000	14CON	15:0	ON	_	SIDL	_	_	_	_	_	TGATE	-	TCKPS<2:0	>	T32	_	TCS	_	0000
0010		31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
0010	TIVIR4	15:0								TMR4	<15:0>								0000
0000		31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
0020	PR4	15:0								PR4<	:15:0>								FFFF
000	TECON	31:16	—	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	0000
UEUU	15CON	15:0	ON	_	SIDL	_	_	_	_	_	TGATE		TCKPS<2:0	>	—	_	TCS	_	0000
0E10		31:16	—	_	_	_	_	_	_	_	_	—	—	_	—	_	_	_	0000
0010	TIVIR5	15:0		•		•				TMR5	<15:0>			•	•				0000
0500	DD5	31:16	—	_	_	_	_	—	_	—	_	_	_	_	—	_	_	_	0000
UE20	PK5	15:0								PR5<	:15:0>								FFFF

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER ('x' = 2 THROUGH 5)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	_	_		_	_
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.0	ON ^(1,3)	—	SIDL ⁽⁴⁾	—	—	-	—	—
7:0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	_	TCS ⁽³⁾	_

Legena:	l	_ec	jei	nd	:
---------	---	-----	-----	----	---

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	emented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode
- bit 12-8 Unimplemented: Read as '0'
- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

- bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾
 - 111 = 1:256 prescale value
 - 110 = 1:64 prescale value
 - 101 = 1:32 prescale value
 - 100 = 1:16 prescale value
 - 011 = 1:8 prescale value
 - 010 = 1:4 prescale value
 - 001 = 1:2 prescale value
 - 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

14.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Watchdog Timer (WDT), when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 14-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP (CONTINUED)

ess		ē								Bi	ts								s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16		-	_	-	_	_		—	_	_		_		_	_		0000
5C40	SPI3CON2	15:0	SPI SGNEXT	-	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_		AUD MONO	—	AUDMC)D<1:0>	0000
		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:)>	MCLKSEL	—	_	—	_	—	SPIFE	ENHBUF	0000
5E00	SPI4CON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
FF 40	CDIACTAT(2)	31:16	—	—	—		RXE	BUFELM<4:	0>		—	—	—	TXBUFELM<4:0>				0000	
5E10	3F1431A1	15:0	_		_	FRMERR	SPIBUSY	_	-	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	19EB
55.00		31:16									31.05								0000
JE20		15:0								DAIA	01.04								0000
5520	SDIABBC(2)	31:16					—	-		_	—	_		—		_	_		0000
5E30		15:0	_	_	_	_	—	_	_					BRG<8:0>					0000
		31:16					_	-		_	_	_		_		_	_		0000
5E40	SPI4CON2 ⁽²⁾	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_		_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
31:24	—	—	—	RXBUFELM<4:0>						
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23:10	—	—	—	TXBUFELM<4:0>						
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR		
7:0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF		

Legend:	C = Clearable bit HS = Set in hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

NOTES:

19.2 Timing Diagrams

Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 19-2: UART RECEPTION

FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	_	-	-	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:10		MONT	H10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY	10<1:0>		DAY01<3:0>				
7:0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
	—	—	—	WDAY01<3:0>					

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10s place digits; contains a value of 0 or 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9

bit 15-12 **DAY10<3:0>:** Binary Coded Decimal value of days bits, 10s place digits; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9 bit 7-4 **Unimplemented:** Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1s place digit; contains a value from 0 to 6

DC CHARACT	ERISTICS		Standard O (unless oth Operating te	perating Conditions erwise stated) mperature -40°C ≤ -40°C ≤	s: 2.3V to 3.6V ≤ TA ≤ +85°C for Indu ≤ TA ≤ +105°C for V-te	strial emp		
Parameter Typical ⁽²⁾ Max.			Units Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)								
DC30a	1.5	5	mA	4 MHz (Note 3)				
DC31a	3	8	mA	10 MHz				
DC32a	5	12	mA		20 MHz (Note 3)			
DC33a	6.5	15	mA		30 MHz (Note 3)			
DC34a	8	20	mA	40 MHz				
DC37a	75	100	μA	-40°C		LPRC (31 kHz)		
DC37b	180	250	μA	+25°C	3.3V	(Note 3)		
DC37c	280	380	μA	+85°C				

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

TABLE 31-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standar (unless Operatir	d Operating Condition otherwise stated) ng temperature -40°C -40°C	I IS: 2.3\ C ≤ TA ≤ C ≤ TA ≤	/ to 3.6 (+85°C (+105°	V ; for Industrial C for V-temp	
Param. No.	Symbol	Cha	racteristic	s ⁽¹⁾	Min.	Max.	Units	Condi	tions
TB10	ТтхН	TxCK High Time	Synchronous, with prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	N = prescale value (1, 2, 4, 8,
TB11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter TB15	16, 32, 64, 256)
TB15	ΤτχΡ	TxCK Input	Synchronous, with prescaler		[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V	
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V	
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			—	1	Трв	_	-

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 31-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard O (unless oth Operating te	$\begin{array}{l} \mbox{perating Conditions: 2.3V} \\ \mbox{erwise stated)} \\ \mbox{ermperature} & -40^{\circ}C \leq TA \leq + \\ -40^{\circ}C \leq TA \leq + \end{array}$	to 3.6V 85°C foi 105°C fo	r Industri or V-tem	al p	
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Max.	Units	Conditions	
IC10	TccL	ICx Input	t Low Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)
IC11	ТссН	ICx Input	t High Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	
IC15	TCCP	ICx Input	t Period	[(25 ns or 2 Трв)/N] + 50 ns	—	ns	_	

Note	1:	These parameters are characterized, but not tested in manufacturing.

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Min. Typ. Max. Units Condition				
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_	
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40		—	ns	_	
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	—	_	60	ns	_	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	_	10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40		—	ns	—	
PS6	TwR	WR Active Time	Трв + 25		_	ns		
PS7	TRD	RD Active Time	Трв + 25		_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

32.0 50 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices operating at 50 MHz.

The specifications for 50 MHz are identical to those shown in **Section 31.0 "40 MHz Electrical Characteristics"**, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 50 MHz operation. For example, parameter DC29a in **Section 31.0** "40 MHz Electrical Characteristics", is the up to 40 MHz operation equivalent for MDC29a.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family 50 MHz devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

w

WWW Address	
WWW, On-Line Support	9