

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64

1

64

TABLE 3: **PIN NAMES FOR 64-PIN USB DEVICES**

64-PIN QFN⁽⁴⁾ AND TQFP (TOP VIEW)

PIC32MX230F128H PIC32MX530F128H PIC32MX250F256H PIC32MX550F256H PIC32MX270F512H PIC32MX570F512H

		QF	N ⁽⁴⁾	TQFP
Pin #	Full Pin Name	Pi	in #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	3	33	USBID/RPF3/RF3
2	AN23/PMD6/RE6	3	34	VBUS
3	AN27/PMD7/RE7	3	35	VUSB3V3
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	3	36	D-
5	AN17/C1INC/RPG7/PMA4/RG7	3	37	D+
6	AN18/C2IND/RPG8/PMA3/RG8	3	38	VDD
7	MCLR	3	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	4	40	OSC2/CLKO/RC15
9	Vss	4	41	Vss
10	Vdd	4	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/VBUSON/RB5	4	43	RPD9/SDA1/RD9
12	AN4/C1INB/RB4	4	44	RPD10/SCL1/PMA15/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	4	45	RPD11/PMA14/RD11
14	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	4	46	RPD0/INT0/RD0
15	PGEC1/VREF-/AN1/RPB1/CTED12/RB1	4	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/AN0/RPB0/PMA6/RB0	4	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	4	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3/RB7	5	50	AN25/RPD2/SCK1/RD2
19	AVDD	5	51	AN26/C3IND/RPD3/RD3
20	AVss	5	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10/RB8	5	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	5	54	C3INC/RD6
23	TMS/CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	5	55	C3INB/RD7
24	TDO/AN11/PMA12/RB11	5	56	VCAP
25	Vss	5	57	VDD
26	Vdd	5	58	C3INA/RPF0/RF0
27	TCK/AN12/PMA11/RB12	5	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	e	60	PMD0/RE0
29	AN14/RPB14/SCK3/CTED5/PMA1/RB14	6	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	6	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	6	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	6	64	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 11.0 "I/O Ports" for more information. 2: 3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW)											
	PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L											
			100 1									
Pin #	Full Pin Name	Pin #	Full Pin Name									
71	RPD11/PMA14/RD11	86	Vdd									
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0									
73	SOSCI/RPC13/RC13	88	AN45/RPF1/PMD10/RF1									
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1									
75	Vss	90	RPG0/PMD8/RG0									
76	AN24/RPD1/RD1	91	RA6									
77	AN25/RPD2/RD2	92	CTED8/RA7									
	AN26/C3IND/RPD3/RD3	93	AN46/PMD0/RE0									
	AN40/RPD12/PMD12/RD12	94	AN47/PMD1/RE1									
	AN41/PMD13/RD13	95	RG14									
-	RPD4/PMWR/RD4	96	RG12									
02	RPD5/PMRD/RD5	97	RG13									
	AN42/C3INC/PMD14/RD6	98	AN20/PMD2/RE2									
	AN43/C3INB/PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3									
85	VCAP	100	AN21/PMD4/RE4									

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 4-1: SFR MEMORY MAP

Devinheral	Virtual	Address
Peripheral	Base	Offset Start
Interrupt Controller		0x1000
Bus Matrix		0x2000
DMA	0	0x3000
USB	0xBF88	0x5000
PORTA-PORTG		0x6000
CAN1		0xB000
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-Timer5		0x0600
IC1-IC5		0x2000
OC1-OC5		0x3000
I2C1-I2C2		0x5000
SPI1-SPI4		0x5800
UART1-UART5	0xBF80	0x6000
PMP	UXBF80	0x7000
ADC1		0x9000
DAC		0x9800
Comparator 1, 2, 3		0xA000
Oscillator		0xF000
Device and Revision ID		0xF200
Flash Controller		0xF400
PPS		0xFA00
Configuration	0xBFC0	0x0BF0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ROTRIN	√<8:1>			
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	ROTRIM<0>		_	_	—		—	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	_	—	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_	_	_	_	_		—

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:y = Value set from Configuration bits on POR							
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess		â								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3280	DCH2CPTR	31:16	—	_	_	_		-	—	_	-	-	—	_	—	-	—	—	0000
0200		15:0		CHCPTR<15:0> 000											0000				
3290	DCH2DAT	31:16	—	—	—	_	_	_	—	—	_	—	—	_	—	—	—	—	0000
5290	DCH2DAI	15:0	_	CHPDAT<7:0>											0000				
3240	DCH3CON	31:16	_	_	_				_				_	_	_		_	_	0000
32AU	DCH3CON	15:0	CHBUSY	_	—	_	_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
32B0	DCH3ECON	31:16	—	00										00FF					
0200	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_			FFF8
32C0	DCH3INT	31:16	—	—	_	—	_	_	—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
0200	Donom	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
32D0	DCH3SSA	31:16								CHSSA	<31:0>								0000
		15:0 31:16																	0000
32E0	DCH3DSA	15:0								CHDSA	<31:0>								0000
2250	DCH3SSIZ	31:16	_	_	_		_	_	—	_	_	_	—		—	_	—	—	0000
32FU	DCH333IZ	15:0								CHSSIZ	Z<15:0>								0000
3300	DCH3DSIZ	31:16	_	_	_				—	-			_	_	_		—	_	0000
3300	DCI ISD3IZ	15:0								CHDSIZ	Z<15:0>								0000
3310	DCH3SPTR	31:16	—	_	—	_	-	-	—	—	_	-	—	_	—	-	—	—	0000
3310	Denisor IIX	15:0								CHSPT	R<15:0>		-					-	0000
3320	DCH3DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0020	DOI 10DI 111	15:0	CHDPTR<15:0> 000									0000							
3330	DCH3CSIZ	31:16	_	_		_	—	_	—	—	_	—	_		—	—	—	—	0000
		15:0								CHCSIZ	Z<15:0>								0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0		CHCPTR<15:0> 0000															
3350	DCH3DAT	31:16	—	—	—	—	_	_	—	—	—	—	—	_	—	—	—	—	0000
2000	_ 5.165.11	15:0		_		_		—	—					CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess											Bit	s							(0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—		—	_	_	—	_		_	—	—	-	-	—		0000
5390	UIEF9	15:0					_	_	—	_	-		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0	U1EP10	31:16	_	_		_			_		_		_	—	-		—		0000
55A0	UIEFIU	15:0	Ι	Ι		_	-	-	_	_			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
53BU	UIEPII	15:0	_	_	_		_	_	—	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
5500	UIEF 12	15:0	Ι	_	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	Ι	_	—	_	—	—	_	—	—	_	_	—	—	—	—	—	0000
55D0	UIEF 13	15:0	Ι	_	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_			_	_	_	_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_			_	_		_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_			_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

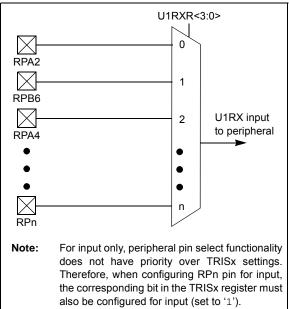
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REI

REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

ess		e		Bits											ú				
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	WDTCON	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	-	—	0000
0000	WDICON	15:0	ON	—	—	—	—	—	_	—	_	SWDTPS<4:0> WDTWINEN WDTCLR				0000			

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 **ENHBUF:** Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- bit 15 **ON:** SPI Peripheral On bit⁽¹⁾
 - 1 = SPI Peripheral is enabled
 - 0 = SPI Peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters in Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 **DISSDO:** Disable SDOx pin bit
 - 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
 - 0 = SDOx pin is controlled by the module
- bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits

When AUDEN = 1:

- MODE32 MODE16 Communication
 - 11 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 10 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 01 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
 - 00 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

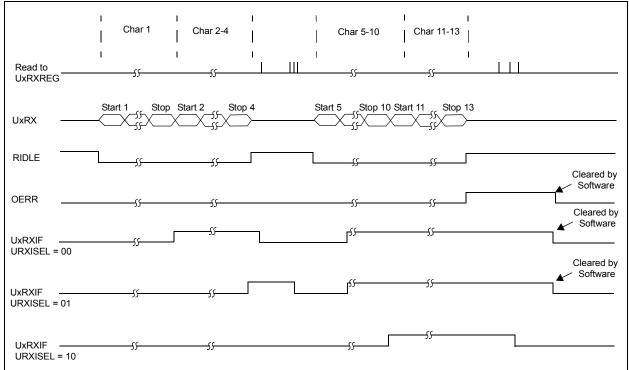
When AUDEN = 0:

MODE32 MODE16 Communication

- 1x **32-bit**
- 01 **16-bit**
- 00 **8-bit**
- bit 9 SMP: SPI Data Input Sample Phase bit

Master mode (MSTEN = 1):

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time
- Slave mode (MSTEN = 0):
- SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
- bit 8 CKE: SPI Clock Edge Select bit⁽³⁾
 - 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
 - SSEN: Slave Select Enable (Slave mode) bit
 - 1 = SSx pin used for Slave mode
 - $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
- bit 6 **CKP:** Clock Polarity Select bit⁽⁴⁾


bit 7

- 1 = Idle state for clock is a high level; active state is a low level
- 0 = Idle state for clock is a low level; active state is a high level
- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

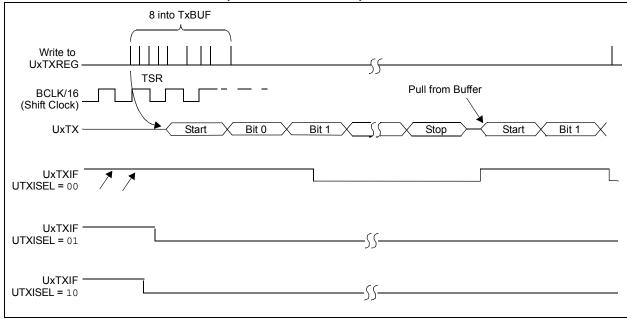

19.2 Timing Diagrams

Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 19-2: UART RECEPTION

FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>			HR01	<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0		
7:0	—	—	_	_	—	—	—	_		
		•				•				
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

REGISTER 21-3: RTCTIME: RTC TIME VALUE REGISTER

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

 bit 31-28
 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2

bit 31-28 HR(10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits, contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9
bit 17-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	_	—	—	—	_	_		
00.40	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
23:16	—	WAKFIL	_	_		SEG	62PH<2:0> ^(1,4)			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	ę	SEG1PH<2:0	>	Р	RSEG<2:0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	SJW<1:	0> ⁽³⁾	BRP<5:0>							

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

511 21 15	
bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.

- 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
- This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (C1CON < 23:21 >) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24		—	_	_	_		_	—
00.40	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				TERRCI	NT<7:0>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				RERRC	NT<7:0>			

REGISTER 23-5: C1TREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)

bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)

bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT \ge 96)

bit 16 EWARN: Transmitter or Receiver is in Error State Warning

- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 23-6: C1FSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—		_	_	_		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	—	_	_	_	_
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FIFOIP<15:0>: FIFOx Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_		—	_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_		—	_	—	-
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 23-7: C1RXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVF<15:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 23-8: C1TMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
51.24		CANTS<15:8>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	CANTS<7:0>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6		CANTSPRE<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				CANTSPF	RE<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (C1CON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks . . 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: C1TMR will be paused when CANCAP = 0.

2: The C1TMR prescaler count will be reset on any write to C1TMR (CANTSPRE will be unaffected).

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = External Clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24		_	_	—	—	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
23:16		_		—	—	FPLLODIV<2:0>		
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
15:8	UPLLEN ⁽¹⁾	_	_	—	—	UP	LLIDIV<2:0>	.(1)
7.0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
7:0	_	F	PLLMUL<2:0	>	—	F	PLLIDIV<2:0	>

DEVCFG2: DEVICE CONFIGURATION WORD 2 REGISTER 28-3:

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-19 Reserved: Write '1'

bit 15

bit 7

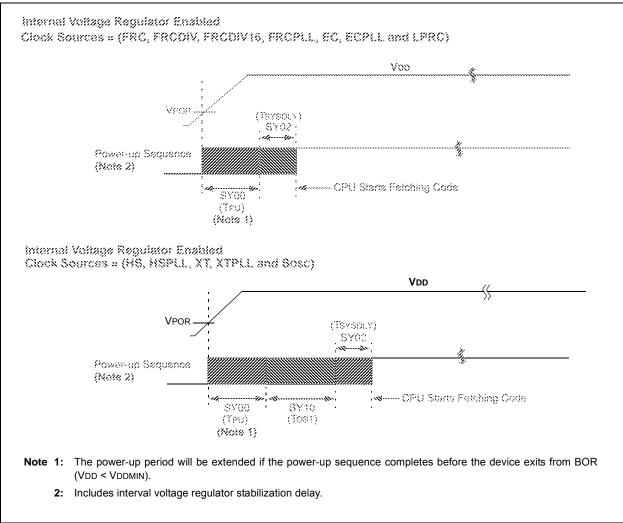
bit 6-4

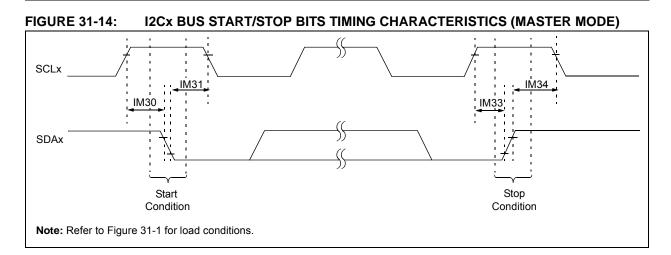
bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 UPLLEN: USB PLL Enable bit⁽¹⁾ 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write '1' bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits⁽¹⁾ 111 = 12x divider 110 = 10x divider 101 = 6x divider100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider000 = 1x divider Reserved: Write '1' FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier
 - 101 = 20x multiplier
 - 100 = 19x multiplier
 - 011 = 18x multiplier
 - 010 = 17x multiplier
 - 001 = 16x multiplier 000 = 15x multiplier
- bit 3 Reserved: Write '1'

Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0			
31:24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	—	—	_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	_	_	_	-	_	-	_			
15:8	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
10.0	USERID<15:8>										
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7:0				USERID<	7:0>						


REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3


Legend:	r = Reserved bit	P = Programmable bi	it
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

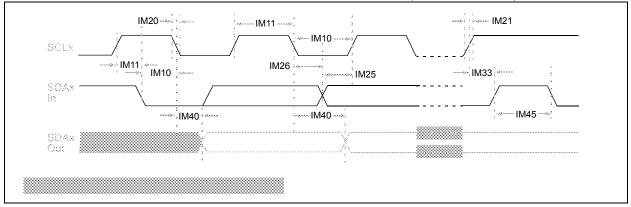

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS

w

WWW Address	377
WWW, On-Line Support	9