

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

					Ren	nappabl	e Per	iphera	als									(þé		
Device	Pins	Packages ⁽⁴⁾	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers/Capture/Compare ⁽²⁾	UART	SPI/I ² S	External Interrupts ⁽³⁾	10-bit 1 Msps ADC (Channels)	Analog Comparators	USB On-The-Go (OTG)	CAN	CTMU	1 ² C	AMP	RTCC	DMA Channels (Programmable/Dedicated)	I/O Pins	JTAG
PIC32MX120F064H	64	QFN, TQFP	64+3	8	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX130F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX130F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	N	0	Y	2	Y	Y	4/0	85	Y
PIC32MX230F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX230F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX530F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX530F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y
PIC32MX150F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX150F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	Ν	0	Y	2	Y	Y	4/0	85	Y
PIC32MX250F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX250F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX550F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX550F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y
PIC32MX170F512H	64	QFN, TQFP	512+3	64	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX170F512L	100 100	TQFP TFBGA	512+3	64	54	5/5/5	5	4	5	48	3	N	0	Y	2	Y	Y	4/0	85	Y
PIC32MX270F512H	64	QFN, TQFP	512+3	64	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX270F512L	100 100	TQFP TFBGA	512+3	64	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX570F512H	64	QFN, TQFP	512+3	64	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX570F512L	100 100	TQFP TFBGA	512+3	64	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y

TABLE 1: PIC32MX1XX/2XX/5XX 64/100-PIN CONTROLLER FAMILY FEATURES

Note 1: All devices feature 3 KB of Boot Flash memory.

2: Four out of five timers are remappable.

Four out of five external interrupts are remappable.
Please contact your local Microchip Sales Office for information regarding the availability of devices in the 100-pin TFBGA package.

4.2 Special Function Register Maps

TABLE 4-2: BUS MATRIX REGISTER MAP

					2010														
ress	_	Ð				-						Bits		-			-	_	
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	BMXCON ⁽¹⁾	31:16	_			_		BMXCHEDMA		_		_		BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BWXCON	15:0	-	_	_	_	_	_	_	_	_	BMXWSDRM	_	_	—	В	MXARB<2:0>		0047
2010	BMXDKPBA ⁽¹⁾	31:16	_		_	_	-	_	_	_	-	_	_	_	_	_		_	0000
2010	DIVINDREDA	15:0									BM	XDKPBA<15:0>							0000
2020	BMXDUDBA ⁽¹⁾	31:16	_	_	_		_	—	_	—	_	—	_	—	—	_	_	—	0000
2020		15:0									BM	XDUDBA<15:0>							0000
2030	BMXDUPBA ⁽¹⁾	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0									BM	XDUPBA<15:0>							0000
2040	BMXDRMSZ	31:16									BM	XDRMSZ<31:0>							xxxx
		15:0																	xxxx
2050	BMXPUPBA ⁽¹⁾	31:16	—	_	—		-	—	_	-	_	—	-	—		BMXPUPBA	<19:16>		0000
		15:0	BMXPUPBA<15:0> 0000																
2060	BMXPFMSZ	31:16	BMXPEMS7<31:0>									xxxx							
		15:0																	xxxx
2070	BMXBOOTSZ	31:16									BMX	(BOOTSZ<31:0)	>						0000
		15:0																	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	-	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	_		—	_		—	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0	_	_	_	_	_	_	_	SWRST ⁽¹⁾

REGISTER 7-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Cleared by har	dware	
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section
 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

REGISTE	R 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs 0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	 1 = A channel address error has been detected Either the source or the destination address is invalid.

0 = No interrupt is pending

TABLE 11-1: INPUT PIN SELECTION

[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT3R	INT3R<3:0>	0000 = RPD2 0001 = RPG8
T2CKR	T2CKR<3:0>	0010 = RPF4
IC3R	IC3R<3:0>	
U1RXR	U1RXR<3:0>	0101 = RPB9 0110 = RPB10
U2RXR	U2RXR<3:0>	0111 = RPC14
U5CTSR	U5CTSR<3:0>	1000 = RPB5 ⁽⁷⁾ 1001 = Reserved
SDI3R	SDI3R<3:0>	1010 = RPC1 ⁽³⁾ 1011 = RPD14 ⁽³⁾
SDI4R	SDI4R<3:0>	1100 = RPG1 ⁽³⁾ 1101 = RPA14 ⁽³⁾
REFCLKIR	REFCLKIR<3:0>	1110 = Reserved 1111 = RPF2 ⁽¹⁾
INT4R	INT4R<3:0>	0000 = RPD3
T5CKR	T5CKR<3:0>	0001 = RPG7 0010 = RPF5
		0011 = RPD11 0100 = RPF0
		0101 = RPB1 0110 = RPE5
		0111 = RPC13 1000 = RPB3
		1001 = RPF12 ⁽³⁾ 1010 = RPC4 ⁽³⁾
		1011 = RPD15 ⁽³⁾ 1100 = RPG0 ⁽³⁾
		1101 = RPA15 ⁽³⁾ 1110 = RPF2 ⁽¹⁾
C1RXR ⁽⁵⁾	C1RXR<3:0> ⁽⁵⁾	1110 = R(F2(2) 1111 = RPF7 ⁽²⁾
INT2R	INT2R<3:0>	0000 = RPD9 0001 = RPG6
T4CKR	T4CKR<3:0>	0010 = RPB8
IC2R	IC2R<3:0>	
IC5R	IC5R<3:0>	0101 = RPB0 0110 = RPE3
U1CTSR	U1CTSR<3:0>	0111 = RPB7 1000 = Reserved
U2CTSR	U2CTSR<3:0>	1001 = RPF12 ⁽³⁾
SS1R	SS1R<3:0>	1010 = RPD12 ⁽³⁾ 1011 = RPF8 ⁽³⁾
SS3R	SS1R<3:0>	1100 = RPC3 ⁽³⁾ 1101 = RPE9 ⁽³⁾
SS3R	SS3R<3:0>	1110 = RPD14 ⁽³⁾ 1111 = RPB2
	INT3R T2CKR IC3R U1RXR U2RXR U5CTSR SDI3R SDI4R REFCLKIR INT4R U3RXR U4CTSR SDI1R SDI2R U4CTSR SDI2R U1RXR ⁽⁵⁾ INT2R INT2R U1CTSR U2RXR U2RXR SS1R SS1R	INT3R INT3R IZCKR T2CKR IC3R IC3R IC3R IC3R U1RXR U1RXR U2RXR U2RXR U5CTSR U5CTSR SDI3R SDI3R SDI3R SDI3R SDI4R SDI4R SDI4R SDI4R SDI4R SDI4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R IAT4 INT4R IAT4 IV3RXR U3RXR U3RXR U3RXR U4CTSR U4CTSR U4CTSR SDI1R U4CTSR SDI2R SDI2R SDI2R SDI2R SDI2R SDI2R SDI2R INT2R INT2R INT2R IC2R IC2R IC2R IC2R IC2R IC5R IC5R IV1CTSR

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

ess										Bits	3								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	—	-	—	—	_	_	—	_		—	—	-	—	—	-	—	0000
0000	JUIGEEO	15:0	ANSELG15	_		—	—	—	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_		—	_		83C0
6610	TRISG	31:16	—	_	_	—	—	_	—	—	_	—	_	_	_	—	_	_	0000
0010	11100	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16	_		_	_	_	—	_	_		_	_		_	_		_	0000
0020	FURIG	15:0	RG15	RG14	RG13	RG12		—	RG9	RG8	RG7	RG6	_	—	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	_	—	—	—		—	—		—	—	_	—	_	_	_	—	0000
0030	LAIG	15:0	LATG15	LATG14	LATG13	LATG12		_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	_	_	_	—		_	_		_	_	_	_	_	_	_	_	0000
0040	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
6650	CNPUG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	_	_	—	0000
0050	CINFUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12		_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
6660	CNPDG	31:16	_	—	—	—	-	—	—		—	—	_	—	_	_	_	—	0000
0000	CINFUG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	-	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
6670	CNCONG	31:16	_	—	—	—	-	—	—		—	—	_	—	_	_	_	—	0000
0070	CINCOING	15:0	ON	_	SIDL	—		_	_		_	_	_	_	_	_	_	_	0000
6690	CNENG	31:16	_	—	—	—	_	_	—	—	_	—	_	_	_	_	_	_	0000
6680	CNENG	15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
		31:16	_	_	—	—	_	_	—	_	-	—	_	_	—	_	-	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS				Bits															
Virtual Addres (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5004	RPG1R	31:16		_	_	_	—	_	_		_		—	_		_	_	—	0000
FC04	RPGIR	15:0	—	—	_	_	_	—	—	—	—	_	_	—		RPG1	<3:0>		0000
5000	DDOOD	31:16	_	—	_	_	_	—	—	—	_	_	_	—	_	_	_	_	0000
FC98	RPG6R	15:0	—	—	_	_	—	—	—	—	_	—	—	—		RPG	6<3:0>		0000
5000	00070	31:16	—	—	_	_	—	—	—	—	_	—	—	—	—	—	_	—	0000
FC9C	RPG7R	15:0	_	—	_	_	_	—	—	—	_	_	_	_		RPG7	/<3:0>		0000
5040	DDOAD	31:16	_	—	_	_	_	—	—	-		_	_	_	_	_	_	_	0000
FCAU	RPG8R	15:0	_	—	_	_	_	—	—			_	—	—		RPG8	3<3:0>	•	0000
5044	DDOOD	31:16	_	—	_	_	_	—	—	_	-	_	_	_	_	_	_	_	0000
FCA4	RPG9R	15:0	—	—	_	_	—	—	—	_	_	—	—	—		RPG9	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		_	_	_	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_			_	_	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	—	_	_
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	_	TCKPS	S<1:0>	_	TSYNC	TCS	_

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

011 31-10	Unimplemented: Read as 0
bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode
	0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMR1 register complete
	In Synchronous Timer mode: This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0: 1 = Gated time accumulation is enabled
	0 = Gated time accumulation is enabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value 00 = 1:1 prescale value
bit 3	Unimplemented: Read as '0'
DIL J	ommplemented. Read as 0

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		_	_		_	—
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	=<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	WAITE<1:0> ⁽¹⁾			

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 **IRQM<1:0>:** Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>			HR01	<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	_	_	_	_	_	_	_	_		
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'					

REGISTER 21-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

'1' = Bit is set

-n = Value at POR

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

REGISTER 23-1: C1CON: CAN MODULE CONTROL REGISTER (CONTINUED)

SIDLE: CAN Stop in Idle bit
1 = CAN Stops operation when system enters Idle mode0 = CAN continues operation when system enters Idle mode
Unimplemented: Read as '0'
CANBUSY: CAN Module is Busy bit
1 = The CAN module is active
0 = The CAN module is completely disabled
Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (C1RXFn<17>)
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (C1RXFn<0>)

00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
10.0	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>	_	CREF	_		CCH	<1:0>

REGISTER 24-1: CMxCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

bit 4 **CREF:** Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin

bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

TABLE 27-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		e								Bi	s							Bits										
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹⁾									
	PMD1	31:16	_	—	—	—	—			—	_	—	_	—		—	—		0000									
F240	FINDT	15:0			—	CVRMD	Ι			CTMUMD	Ι	—		—		—	—	AD1MD	0000									
5050	PMD2	31:16	_	-	—	—	_	-		—	_	_		_	-	_	—		0000									
F250	FINDZ	15:0			—	—	Ι			_	Ι	—		—		CMP3MD	CMP2MD	CMP1MD	0000									
5000	PMD3	31:16	-		_	—	-	—	—	—		_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000									
F260	FINDS	15:0	-		_	—	-	—	—	—		_	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000									
F270	PMD4	31:16	-		_	—	-	—	—	—		_	_	_	—	_	—	_	0000									
F270	FIVID4	15:0	-		_	—	-	—	—	—		_	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000									
5000	PMD5	31:16	-		_	CAN1MD	-	—	—	USBMD ⁽¹⁾		_	_	_	—	_	I2C1MD	I2C1MD	0000									
F280	FINDS	15:0	-		_	—	SPI4MD	SPI3MD	SPI2MD	SPI1MD		_	_	U5MD	U4MD	U3MD	U2MD	U1MD	0000									
5000	PMD6	31:16	-		_	—	-	—	—	—		_	_	_	—	_	—	PMPMD	0000									
F290	FIVIDO	15:0	—	_	—	—	_	_	-	—	_	—	_	_	_	—	REFOMD	RTCCMD	0000									

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

© 2014-2016 Microchip Technology Inc.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = External Clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

DC CHA	RACTERIS	TICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions							
Power-Down Current (IPD) (Notes 1, 5)											
DC40k	33	78	μA	-40°C							
DC40I	49	78	μA	+25°C	Base Power-Down Current						
DC40n	281	450	μA	+85°C	Base Fower-Down Current						
DC40m	559	895	μA	+105°C							
Module	Differential	Current									
DC41e	10	25	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)						
DC42e	29	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)						
DC43d	1000	1300	μA	3.6V	ADC: ΔIADC (Notes 3,4)						

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

AC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
Clock P	arameter	s	•	•			·		
AD50	TAD	ADC Clock Period ⁽²⁾	65	—	—	ns	See Table 31-35		
Convers	sion Rate								
AD55	TCONV	Conversion Time		12 Tad	_		—		
AD56	FCNV	Throughput Rate	_	_	1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V		
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns		
Timing	Paramete	rs							
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	—	—	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad		1.5 Tad	_	—		
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾		0.5 Tad	_		_		
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_		2	μS	—		

TABLE 31-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

NOTES: