

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512lt-50i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 **Power Management**

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-1XX/2XX/5XX 64/100-pin family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

7.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 7-1.

FIGURE 7-1: SYSTEM RESET BLOCK DIAGRAM

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

- 111 = Clock is multiplied by 24
- 110 = Clock is multiplied by 21
- 101 = Clock is multiplied by 20
- 100 = Clock is multiplied by 19
- 011 = Clock is multiplied by 18
- 010 =Clock is multiplied by 17
- 001 =Clock is multiplied by 16
- 000 = Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)

On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0						
23:10	—	—	—	—	—	—	—	—
45.0	U-0	U-0						
15:8	—	—	—	—	—	—	Bit 25/17/9/1 Bit 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 Herricological U-0 R/W-0 R/W-0	
7.0	R/W-0	R/W-0						
7:0				CHPDA	Γ<7:0>			

REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 CHPDAT<7:0>: Channel Data Register bits

<u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

All other modes: Unused.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	4 U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_	_	—	Bit 24/16/8/0 U-0 U-0 U-0 U-0 R/W-0 VBUSVDIE
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
1.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	it Bit 7/9/1 24/16/8/0 -0 U-0 -0 U-0 -0 U-0 -0 U-0 -0 U-0 -0 R/W-0 -0 R/W-0 -0 VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt enabled
 - 0 = ID interrupt disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt enabled
 - 0 = 1 millisecond timer interrupt disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt enabled
 - 0 = Line state interrupt disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt enabled
 - 0 = ACTIVITY interrupt disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt enabled
 - 0 = Session valid interrupt disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt enabled
 - 0 = B-session end interrupt disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt enabled
 - 0 = A-VBUS valid interrupt disabled

REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED)

bit 1 **PPBRST:** Ping-Pong Buffers Reset bit

- 1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
- 0 = Even/Odd buffer pointers not being Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry enabled
 - 0 = USB module and supporting circuitry disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token sent every 1 ms
- 0 = SOF token disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

11.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin, regardless of the output function including PPS remapped output functions to act as an open-drain output. The only exception is the l^2C pins that are open drain by default.

The open-drain feature allows the presence of outputs higher than V_{DD} (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. The ANSELx register bit, when cleared, disables the corresponding digital input buffer pin(s).

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module. The TRISx bits only control the corresponding digital output buffer pin(s).

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level; i.e., when ANSELx = 1; TRISx = x).

Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP.

11.1.4 INPUT CHANGE NOTIFICATION

The input Change Notification (CN) function of the I/O ports allows the PIC32MX1XX/2XX/5XX 64/100-pin devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

11.1.5 INTERNALLY SELECTABLE PULL-UPS AND PULL-DOWNS

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it, which are independent of any other I/O pin functionality (i.e., PPS, Open Drain, or CN). The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output. They should also be disabled on 5V tolerant pins when the pin voltage can exceed VDD.

An additional control register (CNCONx) is shown in Register 11-3.

11.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

20.1 Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess										В	its								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_				—	—		—	RDSTART		—				DUALBUF	—	0000
1000	TWOON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
1010	TIMINODE	15:0	BUSY	IRQM	<1:0>	INCM	l<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITM	Л<3:0>		WAITE	<1:0>	0000
		31:16	—	_	—	—	—	—	—		—	—	—	—	—	—	_	—	0000
7020	PMADDR	15:0	CS2	CS1							ADDR	<13:0>							0000
			ADDR15	ADDR14															0000
7030	PMDOUT	31:16																	
		15:0					-	-		DATAOL	JT<15:0>		-						0000
7040	PMDIN	31:16	_	_	_	_	—	—	_	_	_	_	_	_	_	_		_	0000
		15:0								DATAIN	N<15:0>								0000
7050	PMAEN	31:16		—		—	—	—	—	—	—		—	—			—	—	0000
		15:0	5:0 PTEN<15:0>									0000							
7060	PMSTAT	31:16	_	—	_	_	-	—	_		—	—		_	—		—		0000
	_	15:0	IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		—	OB3E	OB2E	OB1E	OB0E	BFBF
		31:16	_	—	—	—	_	—	—	—	—	—		—	—	_	—	_	0000
7070	PMWADDR	15:0	WCS2	WCS1	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
			WADDR15	WADDR14							WADDF	R<13:0>							0000
		31:16	_	—	—	—	—	—	—	—	—	—		—	—				0000
7080	PMRADDR	15:0	RCS2	RCS1			—	—		—	—		—				—	—	0000
			RADDR15	RADDR14							RADDF	R<13:0>							0000
7090	PMRDIN	31:16	31:16	—	—	—	-	—	—	—	—	—	-	—	—	—	—	_	0000
		15:0	15:0							R	DATAIN<15:	:0>							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

					Bit Bit Bit Bit Bit 25/17/9/1 24/16/8/0 U-0 U-0 U-0 U-0 U-0 U-0 U-0										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31:24	—	—	—	—	—	—	—	—							
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
23:10	_	—	—	—	—	—	—	—							
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0							
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F							
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1							
7:0	OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E							

REGISTER 20-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HSC = Set by Hardware;	Cleared by Software					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 0 = No overflow occurred
- bit 13-12 **Unimplemented:** Read as '0'

bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits

- 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
- 0 = Input Buffer does not contain any unread data
- bit 7 OBE: Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow occurredbit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 Output buffer is ampty (writing data to the buffer will
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
		R/W-0	R/W-0	R/W-0					
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾				2 < 1 2 . 0 >			
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾			WADDF	<<13:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				WADDR<	7:0>				

REGISTER 20-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-16 Unimplemented: Read as '0'
- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		6									Bits								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	PTCCON	31:16		—	—	—		—					CAL<	<9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—		_			RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16		_	_	—		_			—	_	_	_	—	_	_	—	0000
	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0>						ARP1	[<7:0>				0000
0220	DTOTIME	31:16		HR10<3:0>				HR01<3:0>				MIN10<	3:0>			MIN01	<3:0>		xxxx
0220	RICHWL	15:0		SEC	10<3:0>		SEC01<3:0>			—	—	—	—					xx00	
0230		31:16		YEAR	10<3:0>		YEAR01<3:0>			MONTH10<3:0>			MONTH01<3:0>				xxxx		
0230	RICDAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	—	—	—		WDAY0	1<3:0>		xx00
0240		31:16		HR1	0<3:0>			HR01	<3:0>		MIN10<3:0>				MIN01<3:0>				xxxx
0240		15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	—	_	_	—	xx00
0250		31:16	-	_	—	—		—	-	-		MONTH10)<3:0>			MONTH	01<3:0>		00xx
0250		15:0		DAY1	0<3:0>			DAY01	<3:0>		_	_	—	_		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess				Bits															
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D 000	01001	31:16		_	_	_	ABAT		REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	CICON	15:0	ON	_	SIDLE	_	CANBUSY	_	—	_	—	_			D	DNCNT<4:0>			
P010	CICEC	31:16	_	_	_	—		_	—		_	WAKFIL	_	_	_	SI	EG2PH<2:0	>	0000
BUIU	CICEG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0	G1PH<2:0>			>	SJW	<1:0>			BRP<	5:0>			0000
B020	B020 C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	-	-	—	—	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
B020	CTINT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		—	_	—		_		MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16					—	_	—		—					_	_	—	0000
0000	011/20	15:0	—	—	—			FILHIT<4:0	>		—		-	ICODE<6:0>					0040
B040	B040 C1TREC		—	—	—	—	—	_	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
Bollo	office	15:0				TERRC	NT<7:0>		•					RERRCN	VT<7:0>				0000
B050	C1ESTAT	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
8000	01101/1	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060 C1RXC	C1RXOVE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
8000	01101011	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
B070	C1TMR	31:16		CANTS<15:0> 0000															
20.0		15:0							CA	NTSPRE<15	:0>				-		1	l	0000
B080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
8000	Onotino	15:0								EID<1	5:0>						-		XXXX
BUOU	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
D000	Onotim	15:0								EID<1	5:0>								xxxx
POAD	C1PVM2	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
BUAU	CTRAIVIZ	15:0								EID<1	5:0>								xxxx
DUDU		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
DUDU	CTRAINS	15:0								EID<1	5:0>								xxxx
DOCO		31:16	FLTEN3	MSEL	.3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
DUCU	CIFLICONU	15:0	FLTEN1	MSEL	.1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
PODO		31:16	FLTEN7	MSEL	.7<1:0>			FSEL7<4:0	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
PODO	CIFLICONT	15:0	FLTEN5	MSEL	.5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>			0000
DOLO		31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL1									SEL10<4:0>	•		0000					
DOE OTFLECON2 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0							SEL8<4:0>			0000									
DUEU		31:16	FLTEN15	MSEL'	15<1:0>			FSEL15<4:0)>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>			0000
DUFU	GIFLICONS	15:0	FLTEN13	MSEL	13<1:0>			FSEL13<4:0)>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>			0000
D140	C1RXFn	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx
D140	(n = 0-15)	15:0					EID<15:0>												XXXX

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	-	—
22.16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—	—	—	—	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
10.0	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	—	-	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0					MODIF	CTMRIF	RBIF	TBIF

REGISTER 23-3: C1INT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by cl

learing or setting the ON bit N (C1CON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN11	MSEL1	1<1:0>	FSEL11<4:0>						
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	FLTEN10	MSEL1	0<1:0>	FSEL10<4:0>						
15:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	FLTEN9	MSEL	9<1:0>	FSEL9<4:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	FLTEN8	MSEL	8<1:0>	FSEL8<4:0>						

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31	FLTEN11: Filter 11 Enable bit								
	1 = Filter is enabled								
	0 = Filter is disabled								
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits								
	11 = Acceptance Mask 3 selected								
	10 = Acceptance Mask 2 selected								
	01 = Acceptance Mask 1 selected								
	00 = Acceptance Mask 0 selected								
bit 28-24	FSEL11<4:0>: FIFO Selection bits								
	11111 = Reserved								
	•								
	•								
	• 10000 - Reserved								
	01111 = Message matching filter is stored in EIEO buffer 15								
	•								
	•								
	00000 = Message matching filter is stored in FIFO buffer 0								
bit 23	FLTEN10: Filter 10 Enable bit								
	1 = Filter is enabled								
	0 = Filter is disabled								
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits								
	11 = Acceptance Mask 3 selected								
	10 = Acceptance Mask 2 selected								
	01 = Acceptance Mask 1 selected								
	00 = Acceptance Mask 0 selected								

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

26.1 Control Registers

TABLE 26-1: CTMU REGISTER MAP

ess	Register Name ⁽¹⁾	Bits														6			
Virtual Addr (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
A200		31:16	EDG1MOD	EDG1POL		EDG15	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG28	SEL<3:0>		—	_	0000
	CTWOCON	15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM	<5:0>			IRNG	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTE	R 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)										
bit 10	EDGSEQEN: Edge Sequence Enable bit										
	1 = Edge 1 must occur before Edge 2 can occur										
	0 = No edge sequence is needed										
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾										
	1 = Analog current source output is grounded										
	0 = Analog current source output is not grounded										
bit 8	CTTRIG: Trigger Control bit										
	1 = Trigger output is enabled										
	0 = Trigger output is disabled										
bit 7-2	ITRIM<5:0>: Current Source Trim bits										
	011111 = Maximum positive change from nominal current										
	011110										
	•										
	000001 = Minimum positive change from nominal current										
	000000 = Nominal current output specified by IRNG<1:0>										
	111111 = Minimum negative change from nominal current										
	•										
	100010										
	100001 = Maximum negative change from nominal current										
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾										
	11 = 100 times base current										
	10 = 10 times base current										
	01 = Base current level										
	00 = 1000 times base current ⁽⁴⁾										

- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

31.0 40 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 32.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Parameter No.	Typical ⁽²⁾	Max.	Units		Conditions						
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)											
DC30a	1.5	5	mA	4 MHz (Note 3)							
DC31a	3	8	mA		10 MHz						
DC32a	5	12	mA		20 MHz (Note 3)						
DC33a	6.5	15	mA		30 MHz (Note 3)						
DC34a	8	20	mA		40 MHz						
DC37a	75	100	μA	-40°C		LPRC (31 kHz)					
DC37b	180	250	μA	+25°C	3.3V	(Note 3)					
DC37c	280	380	μA	+85°C							

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

AC CHARA	CTERISTIC	S ⁽²⁾	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
ADC Speed	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration					
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC				
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX ADC ANX OF VREF-				

TABLE 31-35: 10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

Overall Width

Overall Length

Lead Thickness

Lead Width

Molded Package Width

Mold Draft Angle Top

Mold Draft Angle Bottom

Molded Package Length

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

Е

D

E1

D1

с

b

α

β

0.09

0.17

11°

11°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

0.20

0.27

13°

13

12.00 BSC

12.00 BSC

10.00 BSC

10.00 BSC

0.22

12°

12°