

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f512lt-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
AN0	16	25	I	Analog	
AN1	15	24	Ι	Analog	
AN2	14	23	Ι	Analog	
AN3	13	22	I	Analog	
AN4	12	21	I	Analog	
AN5	11	20	Ι	Analog	
AN6	17	26	I	Analog	
AN7	18	27	I	Analog	
AN8	21	32	Ι	Analog	
AN9	22	33	Ι	Analog	
AN10	23	34	Ι	Analog	
AN11	24	35	I	Analog	
AN12	27	41	Ι	Analog	
AN13	28	42	I	Analog	
AN14	29	43	I	Analog	
AN15	30	44	I	Analog	
AN16	4	10	I	Analog	
AN17	5	11	I	Analog	
AN18	6	12	I	Analog	
AN19	8	14	Ι	Analog	
AN20	62	98	I	Analog	
AN21	64	100	I	Analog	
AN22	1	3	Ι	Analog	
AN23	2	4	Ι	Analog	
AN24	49	76	Ι	Analog	
AN25	50	77	Ι	Analog	
AN26	51	78	Ι	Analog	
AN27	3	5	Ι	Analog	
AN28	—	1	Ι	Analog	
AN29	—	6	Ι	Analog	
AN30	—	7	Ι	Analog	
AN31		8	Ι	Analog	
AN32		18	Ι	Analog	
AN33	_	19	I	Analog	
AN34	_	39	I	Analog	
AN35	_	40	I	Analog	
Legend:	CMOS = CN	IOS compat	ible inpu	it or output	Analog = Analog input I = Input O = Output

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	-	—	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—		—	—					
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
15:8	—	—	—	MVEC	—		TPC<2:0>						
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	_	—		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP					

REGISTER 5-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 MVEC: Multi Vector Configuration bit

- 1 = Interrupt controller configured for multi vectored mode
- 0 = Interrupt controller configured for single vectored mode
- bit 11 Unimplemented: Read as '0'

bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits

- 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
- 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
- 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
- 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
- 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
- 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
- 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
- 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1	
	—	—	P	LLODIV<2:0	>	FRCDIV<2:0>			
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23.10	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	PLLMULT<2:0>			
15.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15.0	—		COSC<2:0>		—	NOSC<2:0>			
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0	
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

bit 22

y = Value set from Configuration bits on POR

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
 - SOSCRDY: Secondary Oscillator (SOSC) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

NOTES:

Bit Range	Bit 31/23/15/7	Bit Bit Bit 30/22/14/6 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	—	BITO				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:10	—	—	—	—	—	—	—	—				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	—	—	—			PLEN<4:0>						
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	—	_	(CRCCH<2:0>					

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

TABLE 11-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		Ð	a								В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
6600	ANSELG	31:16	_	—	—	_	—	_	—	_	—	—	_	—	—	_	_	_	0000	
0000	ANGLEO	15:0	—	—	—		—	_	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_	—	_	—		03C0	
6610	TRISG	31:16	—	—	—	—	—	_	—	-	—	—	—	—	—	—	—	_	0000	
0010	11100	15:0	—	—	—	_	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	TRISG3	TRISG2	—	_	03CC	
6620	PORTG	31:16	—	—	—	_	—	_	—	—	_	—	—	_	-	—	—	—	0000	
0010		15:0	_	—	—	-	—	_	RG9	RG8	RG7	RG6	—	—	RG3 ⁽²⁾	RG2 ⁽²⁾	—	-	xxxx	
6630	LATG	31:16	_	_	_	_	—	—	—		—	—	_	_	—		_		0000	
		15:0	—	—	—	_	—	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	—		xxxx	
6640	ODCG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000	
		15:0	—	—	—	_	—	—	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	—		0000	
6650	CNPUG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000	
		15:0	—	—	—	_	—	—	CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	—	CNPUG3	CNPUG2	—		0000	
6660	CNPDG	31:16	—	—	—	_	—	—	—	—		—	—	—	—		—		0000	
		15:0	—	—	—	_	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	—	CNPDG3	CNPDG2	—		0000	
6670	CNCONG	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—		0000	
		15:0	ON	—	SIDL	_	—	—	—	—	—	—	—	—	—	—	—		0000	
6680	CNENG	31:16	_	—	—	-	—	_	—	-	—	—	—	—	—	—	—	-	0000	
		15:0	_	_	_	_	—	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	—		0000	
		31:16	_	—	—	_	—	_	—	—	—	—	_	_	—	—	_	_	0000	
6690	CNSTATG	15:0	_	_	_	_	_		CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	_	-	0000	

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

NOTES:

16.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16. "Output Compare"** (DS60001111) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are the key features of this module:

- · Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- · Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	-	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	—	-	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Mode bit

- 1 = Discontinue operation when device enters Idle mode
- 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.2 Timing Diagrams

Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 19-2: UART RECEPTION

FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾				2 < 1 2 . 0 >		
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾			WADDF	<<13:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				WADDR<	7:0>			

REGISTER 20-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-16 Unimplemented: Read as '0'
- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23:10	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN
15:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	TERRCNT<7:0>							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				RERRC	NT<7:0>			

REGISTER 23-5: C1TREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)

bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)

bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT \ge 96)

bit 16 EWARN: Transmitter or Receiver is in Error State Warning

- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 23-6: C1FSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FIFOIP<15:0>: FIFOx Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

NOTES:

28.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS60001114), Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX1XX/2XX/5XX 64/100-pin devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—		ns	—
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—		ns	—
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_		ns	See parameter DO31
SP35	TSCH2DOV,	SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V
	TscL2DoV	SCKx Edge	_	_	20	ns	VDD < 2.7V
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	—
SP50	TssL2scH, TssL2scL	SSx \downarrow to SCKx \uparrow or SCKx Input	175	_	—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

AC CHARA	S ⁽²⁾	Standard (unless of Operating	Operating th erwise st temperature	Conditions (see Note 3): 2.5V to 3.6V ated) e $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp	
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX ADC ANX OF VREF-

TABLE 31-35: 10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 31-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width		1 Трв	_	_	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	_	2 Трв	_	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	_	_	_

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-40: OTG ELECTRICAL SPECIFICATIONS

АС СНА	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				2.3V to 3.6V $TA \le +85^{\circ}C$ for Industrial $TA \le +105^{\circ}C$ for V-temp		
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Condition				Conditions
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—
USB318	VDIFS	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 k Ω load connected to ground

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--