

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW)												
PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L													
			100 1										
Pin #	Full Pin Name	Pin #	Full Pin Name										
71	RPD11/PMA14/RD11	86	Vdd										
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0										
73	SOSCI/RPC13/RC13	88	AN45/RPF1/PMD10/RF1										
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1										
75	Vss	90	RPG0/PMD8/RG0										
76	AN24/RPD1/RD1	91	RA6										
77	AN25/RPD2/RD2	92	CTED8/RA7										
	AN26/C3IND/RPD3/RD3	93	AN46/PMD0/RE0										
	AN40/RPD12/PMD12/RD12	94	AN47/PMD1/RE1										
	AN41/PMD13/RD13	95	RG14										
-	RPD4/PMWR/RD4	96	RG12										
02	RPD5/PMRD/RD5	97	RG13										
	AN42/C3INC/PMD14/RD6	98	AN20/PMD2/RE2										
	AN43/C3INB/PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3										
85	VCAP	100	AN21/PMD4/RE4										

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

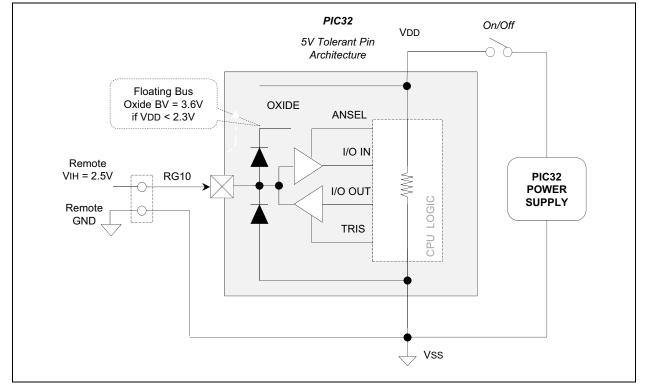
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)


When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.9.2 5V TOLERANT INPUT PINS

The internal high side diode on 5V tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-7. Voltages on these pins, if VDD < 2.3V, should not exceed roughly 3.2V relative to Vss of the PIC32 device. Voltage of 3.6V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability. If a remotely powered "digital-only" signal can be guaranteed to always be \leq 3.2V relative to Vss on the PIC32 device side, a 5V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than Vss - 0.3V.

TABLE 5-2: INTERRUPT REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Address (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1050	IPC5	31:16	_		_	A	AD1IP<2:0>		AD1IS	i<1:0>			-		OC5IP<2:02	>	OC5IS	S<1:0>	0000
10E0	IPC5	15:0	—		—	IC	IC5IP<2:0>		IC5IS	<1:0>			—		T5IP<2:0>		T5IS	<1:0>	0000
1050	IPC6	31:16	_		_	CM	IP1IP<2:0>	•	CMP1	S<1:0>		-	_		FCEIP<2:0	>	FCEIS	S<1:0>	0000
10F0	IPC0	15:0	—		—	RT	CCIP<2:0>	•	RTCCI	S<1:0>			—		FSCMIP<2:0	>	FSCM	IS<1:0>	0000
1100	IPC7	31:16	—		—	U	U1IP<2:0>		U1IS-	<1:0>			—	SPI1IP<2:0>		SPI1IS<1:0>		0000	
1100	IPC/	15:0	_		—	USI	BIP<2:0> ⁽²)	USBIS<1:0> ⁽²⁾		_	_	_	CMP2IP<2:0>		CMP2IS<1:0>		0000	
1110	IPC8	31:16	—		—	SF	PI2IP<2:0>		SPI2IS<1:0>				—		PMPIP<2:0	>	PMPIS<1:0>		0000
1110	IPCo	15:0	—		—	С	NIP<2:0>		CNIS<1:0>		—	—	—		I2C1IP<2:0	>	I2C1IS<1:0>		0000
1120	IPC9	31:16	_	_	—	U	4IP<2:0>		U4IS<1:0>		_	—	_	U3IP<2:0>			U3IS<1:0>		0000
1120	IF C9	15:0	_	_	—	120	C2IP<2:0>		12C215	S<1:0>	_	—	_		U2IP<2:0>		U2IS	<1:0>	0000
1130	IPC10	31:16	_	_	_	DM	IA1IP<2:0>	•	DMA1	S<1:0>	-	-	_		DMA0IP<2:0	>	DMA0I	S<1:0>	0000
1130	IFCIU	15:0	_	_	_	CT	MUIP<2:0>	•	CTMUI	S<1:0>	_	_	_		U5IP<2:0>		U5IS	<1:0>	0000
1140	IPC11	31:16	—		—	CA	NIP<2:0>(5)	CANIS	<1:0> (5)	—	—	—		CMP3IP<2:0	>	CMP3I	S<1:0>	0000
1140	IFCII	15:0	_	_	—	DM	IA3IP<2:0>	•	DMA3	S<1:0>	_	—	_		DMA2IP<2:0	>	DMA2I	S<1:0>	0000
1150	IPC12	31:16	—	—	—	—	—	_	—	—	_	_	—	—		_	—		0000
1150	IFC12	15:0	—		—	SP	4P<2:0>(1))	SPI4S<	:1:0> (1)	—	—	—		SPI3P<2:0>	•	SPI35	S<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

NOTES:

REGIOI	LIX 10-J.							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	-	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—	_	—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—		_			—	—
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND	—	_	USLPGRD	USBBUSY	_	USUSPEND	USBPWR

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

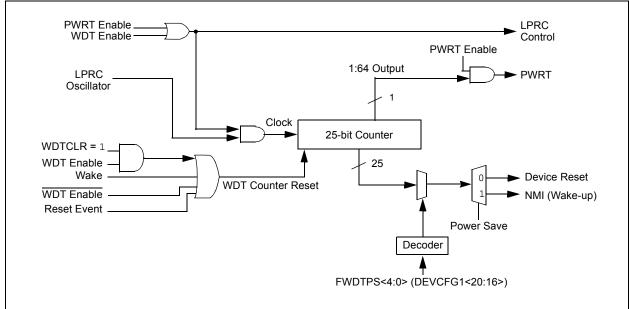
Legend:

Logonal				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)


14.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Watchdog Timer (WDT), when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 14-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—	_	—	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	_	_	_	—	_	—	_
7.0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
7:0	_		S	WDTWINEN	WDTCLR			

REGISTER 14-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR								
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration
 - 0 = Disable the WDT if it was enabled in software
- bit 14-7 Unimplemented: Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- bit 0 **WDTCLR:** Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- **Note 1:** A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

19.1 Control Registers

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP

'ess)		e								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16	_		_	_	—			—	_	—	_	_		—		_	0000
0000	OTWODE	15:0	ON	-	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	—	ADM_EN ADDR<7:0>								0000							
0010	0101/1	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020	U1TXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	011XIII20	15:0	—	—	—	—	—	—	—	TX8				Transmit	Register				0000
6030	U1RXREG	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
	01101120	15:0	—	—	—	_	—	—	—	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—	—	—	_		—	—		_		—	—			—	—	0000
		15:0							Bau	d Rate Gene	erator Pres	caler							0000
6200	U2MODE ⁽¹⁾	31:16	_	_				_	_	—	_		_		_		—		0000
		15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	-	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6210	U2STA ⁽¹⁾	31:16	—	—	—	—	—	—	—	ADM_EN				ADDR	-			-	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6220	U2TXREG	31:16	_	_		_	—	_	—	_	_	_	_				_	—	0000
		15:0	_	_			—	_	_	TX8				Transmit	Register				0000
6230	U2RXREG	31:16	_	_	—	_	—	_	_	_	_	_	_		_	—	—	—	0000
		15:0	_	_	—	_	_	—		RX8				Receive	Register				0000
6240	U2BRG ⁽¹⁾	31:16	_	_			—						_		_	—	_	—	0000
		15:0							Bau	d Rate Gene	erator Pres	caler							0000
6400	U3MODE ⁽¹⁾	31:16 15:0	-	_	-	-	-	—	—	—		—		—	—		_	-	0000
-			ON	_	SIDL	IREN	RTSMD		UEN	-	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—	—	-	-	-	-	—	ADM_EN		-1 -1 0		ADDR	-	5500	0500		0000
		15:0	UTXISE	-	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	=L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16	_					_	_	— 	_	—	_		—	_	_	—	0000
		15:0								0000									
6430	U3RXREG	31:16	_				_	_			_	_		- Boogive	— Bogistor	_	_	—	0000
		15:0	—	—	—			—	—	RX8				Receive	Register				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	—	-	—	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

Legend:

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal

bit 14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGIST	ER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)
bit 7-0	ARPT<7:0>: Alarm Repeat Counter Value bits ⁽³⁾
	11111111 =Alarm will trigger 256 times
	•
	•
	• 00000000 =Alarm will trigger one time
	The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0 .
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
3:	This assumes a CPU read will execute in less than 32 PBCLKs.
Note:	This register is reset only on a Power-on Reset (POR).

NOTES:

[
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				SID<1	0:3>			
23:16	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
23.10		SID<2:0>		—	MIDE	_	EID<'	17:16>
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				EID<1	5:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				EID<7	7:0>			

REGISTER 23-9: C1RXMn: CAN ACCEPTANCE FILTER MASK 'n' REGISTER (n = 0, 1, 2 OR 3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include the SIDx bit in filter comparison
- 0 = The SIDx bit is a 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
 - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
 - Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))

bit 18 Unimplemented: Read as '0'

- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Include the EIDx bit in filter comparison
 - 0 = The EIDx bit is a 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0							
31.24	C1FIFOBA<31:24>								
00.40	R/W-0	R/W-0							
23:16	C1FIFOBA<23:16>								
15:8	R/W-0	R/W-0							
	C1FIFOBA<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾	
	C1FIFOBA<7:0>								

REGISTER 23-15: C1FIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 C1FIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

REGIST	ER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 8	CTTRIG: Trigger Control bit
	1 = Trigger output is enabled
	0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	100010
	100001 = Maximum negative change from nominal current
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾
	11 = 100 times base current
	10 = 10 times base current
	01 = Base current level
	00 = 1000 times base current ⁽⁴⁾
Nets 4	When this bit is set for Dules Delay Operation, the EDOOOEL (0.0), bits must be act to (1.1)

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

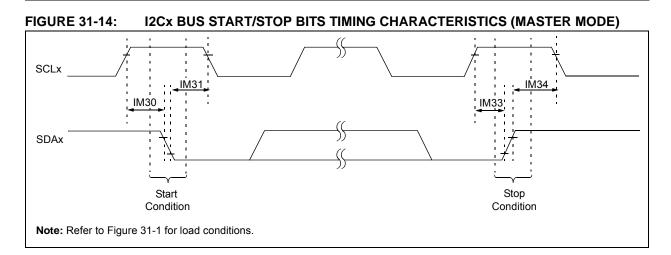
- Control register lock sequence
- · Configuration bit select lock

27.4.1.1 Control Register Lock

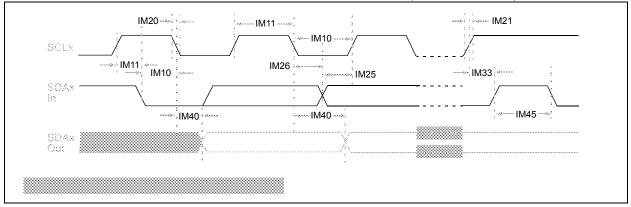
Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

27.4.1.2 Configuration Bit Select Lock

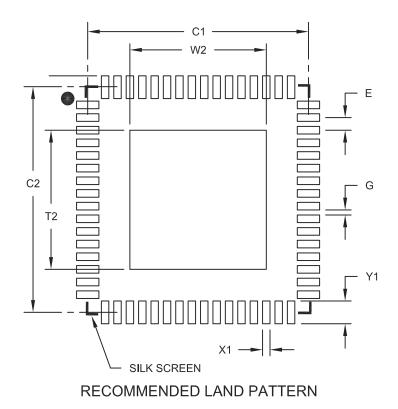

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
31:24	—	—	_	СР	—	—	_	BWP
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:16	—	_	_	_	PWP<9:6>			
45.0	R/P	R/P	R/P	R/P	R/P	R/P	r-1	r-1
15:8			PWP<5:0>				_	—
7:0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
	_	_	_	ICESEL<1:0> JTAGEN ⁽¹			DEBU	G<1:0>


REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 Reserved: Write '0'
- bit 30-29 Reserved: Write '1'
- bit 28 **CP:** Code-Protect bit
 - Prevents boot and program Flash memory from being read or modified by an external programming device.
 - 1 = Protection is disabled
 - 0 = Protection is enabled
- bit 27-25 Reserved: Write '1'
- bit 24 **BWP:** Boot Flash Write-Protect bit
 - Prevents boot Flash memory from being modified during code execution.
 - 1 = Boot Flash is writable
 - 0 = Boot Flash is not writable
- bit 23-20 Reserved: Write '1'
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.



64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch E		0.50 BSC			
Optional Center Pad Width	W2			5.50	
Optional Center Pad Length	T2			5.50	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A