

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128ht-50i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description					
U3CTS	PPS	PPS	Ι	ST	UART3 Clear to Send					
U 3RTS	PPS	PPS	0		UART3 Ready to Send					
U3RX	PPS	PPS		ST	UART3 Receive					
U3TX	PPS	PPS	0	_	UART3 Transmit					
U4CTS	PPS	PPS	I	ST	UART4 Clear to Send					
U4RTS	PPS	PPS	0	_	UART4 Ready to Send					
U4RX	PPS	PPS	I	ST	UART4 Receive					
U4TX	PPS	PPS	0	_	UART4 Transmit					
U5CTS	_	PPS		ST	UART5 Clear to Send					
U5RTS	_	PPS	0	_	UART5 Ready to Send					
U5RX	—	PPS	Ι	ST	UART5 Receive					
U5TX	_	PPS	0	_	UART5 Transmit					
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1					
SDI1	PPS	PPS	I	_	SPI1 Data In					
SDO1	PPS	PPS	0	ST	SPI1 Data Out					
SS1	PPS	PPS	I/O	_	SPI1 Slave Synchronization for Frame Pulse I/O					
SCK2	4	10	I/O	ST	Synchronous Serial Clock Input/Output for SPI2					
SDI2	PPS	PPS	Ι	_	SPI2 Data In					
SDO2	PPS	PPS	0	ST	SPI2 Data Out					
SS2	PPS	PPS	I/O	_	SPI2 Slave Synchronization for Frame Pulse I/O					
SCK3	29	39	I/O	ST	Synchronous Serial Clock Input/Output for SPI3					
SDI3	PPS	PPS	I	_	SPI3 Data In					
SDO3	PPS	PPS	0	ST	SPI3 Data Out					
SS3	PPS	PPS	I/O	_	SPI3 Slave Synchronization for Frame Pulse I/O					
SCK4	_	48	I/O	ST	Synchronous Serial Clock Input/Output for SPI4					
SDI4	_	PPS	I	_	SPI4 Data In					
SDO4	_	PPS	0	ST	SPI4 Data Out					
SS4	_	PPS	I/O	_	SPI4 Slave Synchronization for Frame Pulse I/O					
SCL1	37 ⁽¹⁾ , 44 ⁽²⁾	57 ⁽¹⁾ , 66 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1					
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1					
SCL2	32	58	I/O	ST	Synchronous Serial Clock Input/Output for I2C2					
SDA2	31	59	I/O	ST	Synchronous Serial Data Input/Output for I2C2					
TMS	23	17	Ι	ST	JTAG Test Mode Select Pin					
ТСК	27	38	I	ST	JTAG Test Clock Input Pin					
TDI	28	60	I	_	JTAG Test Clock Input Pin					
TDO	24	61	0		JTAG Test Clock Output Pin					
Legend:	CMOS = CN ST = Schmit	10S compati	ble inpu	It or output	Analog = Analog input I = Input O = Output					

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R	R	R	R	R	R	R	R						
31:24				BMXDRN	ISZ<31:24>									
22.16	R	R	R	R	R	R	R	R						
23:16		BMXDRMSZ<23:16>												
45.0	R	R	R	R	R	R	R	R						
15:8				BMXDRI	MSZ<15:8>									
7.0	R	R	R	R	R	R	R	R						
7:0		BMXDRMSZ<7:0>												

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	—	—	—	—					
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	_	_	_	—	BMXPUPBA<19:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0					
15:8				BMXPU	PBA<15:8>								
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0		BMXPUPBA<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n = Value at POR	'1' = Bit is set	"0" = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

7.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 7-1.

FIGURE 7-1: SYSTEM RESET BLOCK DIAGRAM

TABLE 11-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection				
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect				
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS				
RPB8	RPB8R	RPB8R<3:0>	0010 = U4TX				
RPB15	RPB15R	RPB15R<3:0>	0011 = REFCLKO				
RPD4	RPD4R	RPD4R<3:0>	0101 = Reserved				
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved				
RPE3	RPE3R	RPE3R<3:0>	0111 = SS1				
RPB7	RPB7R	RPB7R<3:0>	1000 = SDO1				
RPB2	RPB2R	RPB2R<3:0>	1001 = Reserved				
RPF12 ⁽³⁾	RPF12R	RPF12R<3:0>	1010 = Reserved				
RPD12 ⁽³⁾	RPD12R	RPD12R<3:0>	1011 = 005 1100 = Reserved				
RPF8 ⁽³⁾	RPF8R	RPF8R<3:0>	1101 = C1OUT				
RPC3 ⁽³⁾	RPC3R	RPC3R<3:0>	1110 = SS3				
RPE9 ⁽³⁾	RPE9R	RPE9R<3:0>	1111 = SS4⁽³⁾				
RPD1	RPD1R	RPD1R<3:0>	0000 = <u>No Connect</u>				
RPG9	RPG9R	RPG9R<3:0>	0001 = U2RTS				
RPB14	RPB14R	RPB14R<3:0>	10010 = Reserved $10011 = \overline{\text{U1RTS}}$				
RPD0	RPD0R	RPD0R<3:0>	$0100 = U5TX^{(3)}$				
RPD8	RPD8R	RPD8R<3:0>	0101 = Reserved				
RPB6	RPB6R	RPB6R<3:0>	0110 = SS2				
RPD5	RPD5R	RPD5R<3:0>	1000 = SDO1				
RPF3 ⁽¹⁾	RPF3R	RPF3R<3:0>	1001 = Reserved				
RPF6 ⁽²⁾	RPF6R	RPF6R<3:0>	1010 = Reserved				
RPF13 ⁽³⁾	RPF13R	RPF13R<3:0>	1011 = OC2				
RPC2 ⁽³⁾	RPC2R	RPC2R<3:0>	1100 = OC1 1101 = Reserved				
RPE8 ⁽³⁾	RPE8R	RPE8R<3:0>	1110 = Reserved				
RPF2 ⁽¹⁾	RPF2R	RPF2R<3:0>	1111 = Reserved				

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

IADL	E 11-10.	PER	IPHER		SELEC			JIJIER			UED)								
SS										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
EBEC	PPD15P	31:16		_	_	_	—	_	—	—	_	—	_	—	_	—	—	_	0000
IBIC	REDISK	15:0	—		—	—	—	—	—		_		—	—		RPD1	5<3:0>		0000
FC0C	RPE3R	31:16	_				_							_	—			—	0000
		15:0	—				—			—	_	—		—		RPE3	<3:0>		0000
FC14	RPE5R	31:16	—				—			—	—	—		—	—	—	—		0000
		15:0	—				—			—	—	—		—		RPE5	<3:0>		0000
FC20	RPE8R	31:16	_				_			_	_	_	_	_	—	—	—		0000
		15:0	_				_			_	_	_		_		RPE8	<3:0>		0000
FC24	RPE9R	31:16	_				_			_	_	_		_	—		—		0000
		15:0	_											_		RPES	<3:0>		0000
FC40	RPF0R	31:16	_				_			_	_		_		_		—		0000
		15:0	_				_			_	_		_			RPFU	<3:0>		0000
FC44	RPF1R	31:10	_		_	_	_	_		_	_	_	_	_	—			_	0000
		15.0															<3.0>		0000
FC48	RPF2R	15.0															<3:0>		0000
		31.16													_				0000
FC4C	RPF3R	15:0														RPF3	<3.0>		0000
		31.16	_				_			_					_	_	_	_	0000
FC50	RPF4R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF4	<3:0>		0000
		31:16	_	_	_	_		_	_	_		_	_		_		_		0000
FC54	RPF5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF5	<3:0>		0000
		31:16	_	- 1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC58	RPF6R	15:0	_	_	_	_		_	_	_	_	_	_	_		RPF6	<3:0>		0000
		31:16	_	_	_	_		_	_	_	_	_	_		—				0000
FC5C	RPF7R	15:0	_	_	_	_		_	_	_	_	_	_			RPF6	<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	—	—	—		0000
FC60	RPF8R	15:0	_	—	—	—	_	—	—	_	_	_	_	_		RPF7	<3:0>		0000
F070		31:16	_	_	_	_	_	_	_	_	_	—	_	_	—	—	—	—	0000
FC70	RPF12R	15:0	—	—	—	—	_	—	—	_	—	—	—	_		RPF1	2<3:0>		0000
EC74		31:16	_	_	_	_	—	_	—	—	—	—	—	—	_	—	—	—	0000
FU/4	RPFIJK	15:0			_	_	_	_	_	—	_	—	_	_		RPF1	3<3:0>		0000
EC 90	PPCOP	31:16		_	_	_	_	_	_	_	_	—	_	_	_	—	—		0000
LCQO	REGUR	15:0			_	_	_	_	_				_	_		RPG	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24		HR10	<3:0>			HR01	<3:0>					
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16		MIN10	<3:0>		MIN01<3:0>							
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8		SEC10)<3:0>			SEC0 ²	1<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0	—	_	—	—	_	_	—	—				
Legend:												
R = Read	lable bit		W = Writable	e bit	U = Unimplemented bit, read as '0'							

REGISTER 21-3: RTCTIME: RTC TIME VALUE REGISTER

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

 bit 31-28
 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2

bit 31-28 HR(10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits, contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9
bit 17-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		ø								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
9100	ADC1BUF9	31:16							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000
		15:0																	0000
9110	ADC1BUFA	31:16		ADC Result Word A (ADC1BUFA<31:0>)															
		15.0		0000															
9120	ADC1BUFB	15.0							ADC Res	sult Word B	(ADC1BUF	B<31:0>)							0000
		31.16																	0000
9130	ADC1BUFC	15:0							ADC Res	sult Word C	(ADC1BUF	C<31:0>)							0000
		31:16																	0000
9140	ADC1BUFD	15:0							ADC Res	sult Word D	(ADC1BUF	D<31:0>)							0000
0450		31:16										(F +2)(+0)							0000
9150	ADCIBUFE	15:0		ADU Result Word E (ADU1BUFE<31:0>)										0000					
9160		31:16													0000				
9100	ADGIBUFF	15:0							ADC Res			1 ~51.02)							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

23.1 Control Registers

TABLE 23-1: CAN1 REGISTER SUMMARY

ess			Bits																
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D 000	01001	31:16		_	_	_	ABAT		REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	CICON	15:0	ON		SIDLE	_	CANBUSY	_	—	_	—	_			D	NCNT<4:0>			0000
P010	CICEC	31:16	_	_	_	—		_	—		_	WAKFIL	_	_	_	SI	EG2PH<2:0	>	0000
BUIU	CICEG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0	>		PRSEG<2:0	>	SJW	<1:0>			BRP<	5:0>			0000
B020	CUNT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	-	-	—	—	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
B020	CTINT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF		—	_	—		_		MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16					_	_	—		—					_	_	—	0000
0000	011/20	15:0	—	—	—			FILHIT<4:0	>		—		-	1	CODE<6:0>				0040
B040	C1TREC	31:16	—	—	—	—	—	_	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
Bollo	office	15:0				TERRC	NT<7:0>		•					RERRCN	VT<7:0>				0000
B050	C1ESTAT	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
8000	01101/1	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	C1RXOVE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
8000	01101011	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
B070	C1TMR	31:16	CANTS<15:0> 00										0000						
20.0		15:0							CA	NTSPRE<15	:0>				-			l	0000
B080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
8000	Onotino	15:0								EID<1	5:0>						-		XXXX
BUOU	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
D000	Onotim	15:0								EID<1	5:0>								xxxx
POAD	C1PVM2	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
BUAU	CTRAIVIZ	15:0								EID<1	5:0>								xxxx
DUDU		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
DUDU	CTRAINS	15:0								EID<1	5:0>								xxxx
DOCO		31:16	FLTEN3	MSEL	.3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
DUCU	CIFLICONU	15:0	FLTEN1	MSEL	.1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
PODO		31:16	FLTEN7	MSEL	.7<1:0>			FSEL7<4:0	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
PODO	CIFLICONT	15:0	FLTEN5	MSEL	.5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>			0000
DOLO		31:16	FLTEN11	MSEL	11<1:0>			FSEL11<4:0)>		FLTEN10	MSEL1	0<1:0>		F	SEL10<4:0>	•		0000
DUEU	C IFLI CON2	15:0	FLTEN9	MSEL	.9<1:0>			FSEL9<4:0	>		FLTEN8	MSEL	8<1:0>		FSEL8<4:0>				0000
DUEU		31:16	FLTEN15	MSEL'	15<1:0>			FSEL15<4:0)>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>			0000
DUFU	GIFLICONS	15:0	FLTEN13	MSEL	13<1:0>			FSEL13<4:0)>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>			0000
D140	C1RXFn	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx
D140	(n = 0-15)	15:0								EID<1	5:0>								XXXX

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
22:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
23.10	—	WAKFIL	—	—	—	SEC	25/17/9/1 U-0 R/W-0 G2PH<2:0> ⁽¹ R/W-0 PRSEG<2:0> R/W-0	,4)			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0	>	Р	RSEG<2:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	SJW<1:	0> ⁽³⁾	BRP<5:0>								

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)		
	111 = Length is 8 x TQ		
	•		
	•		
	•		
	000 = Length is 1 x TQ		
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾		
	1 = Freely programmable0 = Maximum of SEG1PH or Information Processing Time, whichever is greater		
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾		
	1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point		
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾		
	111 = Length is 8 x TQ		
	•		
	•		
	•		
	000 = Length is 1 x TQ		
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.		
2:	3 Time bit sampling is not allowed for BRP < 2.		
3:	SJW ≤ SEG2PH.		

- 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
- This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (C1CON < 23:21 >) = 100).

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

- bit 10-8 **PRSEG<2:0>:** Propagation Time Segment bits⁽⁴⁾ 111 = Length is $8 \times TQ$ $000 = \text{Length is } 1 \times TQ$ SJW<1:0>: Synchronization Jump Width bits⁽³⁾ bit 7-6 11 = Length is $4 \times TQ$ $10 = \text{Length is } 3 \times TQ$ 01 = Length is 2 x TQ $00 = \text{Length is } 1 \times TQ$ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 111111 = Tq = (2 x 64)/SYSCLK 111110 = TQ = (2 x 63)/SYSCLK • 000001 = TQ = (2 x 2)/SYSCLK $000000 = TQ = (2 \times 1)/SYSCLK$ Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_	—
15.9	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.0	—	—	—	FILHIT<4:0>				
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7.0	_	ICODE<6:0> ⁽¹⁾						

REGISTER 23-4: C1VEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

```
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Reserved
         10000 = Reserved
         01111 = Filter 15
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
         ICODE<6:0>: Interrupt Flag Code bits<sup>(1)</sup>
bit 6-0
         1111111 = Reserved
         1001001 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
         1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0111111 = Reserved
         0010000 = Reserved
         0001111 = FIFO15 Interrupt (C1FSTAT<15> set)
         0000000 = FIFO0 Interrupt (C1FSTAT<0> set)
```


30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.0 40 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 32.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Tomp Bango	Max. Frequency	
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family	
MDC5	VBOR-3.6V	-40°C to +85°C	50 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 32-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽³⁾	Max.	Units Conditions		
Operating Current (IDD) (Note 1, 2)					
MDC24	25	40	mA	50 MHz	

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- CPU executing while(1) statement from Flash
- **3:** RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMIL

© 2014-2016 Microchip Technology Inc

Revision D (April 2016)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-2.

Section Name	Update Description		
1.0 "Device Overview"	Removed the USBOEN pin and all trace-related pins from the Pinout I/O Descriptions (see Table 1-1).		
2.0 "Guidelines for Getting Started	Section 2.7 "Trace" was removed.		
with 32-bit MCUs"	Section 2.10 "Sosc Design Recommendation" was removed.		
3.0 "CPU"	References to the Shadow Register Set (SRS), which is not supported by PIC32MX1XX/2XX/5XX 64/100-pin Family devices, were removed from 3.1 "Features" , 3.2.1 "Execution Unit ", and Coprocessor 0 Registers (Table 3.2)		
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).		
5.0 "Interrupt Controller"	The Single Vector Shadow Register Set (SSO) bit (INTCON<16>) was removed (see Register 5-1).		
10.0 "USB On-The-Go (OTG)"	The UOEMON bit (U1CNFG1<6>) was removed (see Register 10-20).		
23.0 "Controller Area Network	The CAN features (number of messages and FIFOs) were updated.		
(CAN)"	The PIC32 CAN Block Diagram was updated (see Figure 23-1).		
	The following registers were updated:		
	C1FSTAT (see Register 23-6)		
	C1RXOVF (see Register 23-7)		
	C1RXFn (see Register 23-14)		
	C1FIFOCONn (see Register 23-16)		
	C1FIFOINTn (see Register 23-17)		
	C1FIFOUAn (see Register 23-18)		
	C1FIFOCIn (see Register 23-19)		
	The C1FLTCON4 through C1FLTCON7 registers were removed.		
28.0 "Special Features"	The virtual addresses for the Device Configuration Word registers were updated (see Table 28-1).		
31.0 "40 MHz Electrical Characteristics"	The EJTAG Timing Characteristics diagram was updated (see Figure 31-23).		

TABLE A-3: MAJOR SECTION UPDATES