

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128ht-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.1 Control Registers

TABLE 7-1: RESET SFR SUMMARY

ess				Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E600	BCON	31:16		—	HVDR	—			—	—									0000
FOUU	RCON	15:0	-	—	—	—	—	—	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
E610	DOWDOT	31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
F010	K9WK91	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	SWRST	0000

Legend: — = unimplemented, read as '0'. Address offset values are shown in hexadecimal.

Note 1: The Reset value is dependent on the DEVCFGx Configuration bits and the type of reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1	
31.24	—	—	P	LLODIV<2:0	>	FRCDIV<2:0>			
22:16	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23.10	—	SOSCRDY	SCRDY PBDIVRDY PBDIV			PLLMULT<2:0>			
15.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15.0	—		COSC<2:0>		—	NOSC<2:0>			
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0	
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

bit 22

y = Value set from Configuration bits on POR

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
 - SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	_		RODIV<14:8>(1)									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	RODIV<7:0> ⁽³⁾											
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC				
15:8	ON	_	SIDL	OE	RSLP ⁽²⁾	_	DIVSWEN	ACTIVE				
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	—	—	—	—		ROSEL	_<3:0>(1)					

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable	HS = Hardware Settable			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31 Unimplemented: Read as '0'

bit 30-16 RODIV<14:0>: Reference Clock Divider bits⁽¹⁾

This value selects the Reference Clock Divider bits. See Figure 8-1 for more information.

- bit 15 **ON:** Output Enable bit
 - 1 = Reference Oscillator Module enabled
 - 0 = Reference Oscillator Module disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Peripheral Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12 **OE:** Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on REFCLKO pin
 - 0 = Reference clock is not driven out on REFCLKO pin
- bit 11 **RSLP:** Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator Module output continues to run in Sleep
 - 0 = Reference Oscillator Module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHSSIZ<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				CHSSIZ	<7:0>						

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHDSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				CHDSIZ	<u>/</u> <7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—		—		—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—		—		—
7.0	R/WC-0, HS	U-0	R/WC-0, HS					
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	_	_	_	_	_		—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾	HEBDET			DDDDQT	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	USBROI	TIOSTEIN"	RESUMENT	FFDROI	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability enabled
- 0 = USB host capability disabled

bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling activated
- 0 = RESUME signaling disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

11.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 11-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

11.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

11.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

11.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 11-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	—	—	—	_	—	_	—	_	—	—	_	—	—	_	_	_	0000
0000	ANOLLO	15:0	_				—	_	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_	—		—		03C0
6610	TRISG	31:16	_			_	—	—	—	—		_	—	—	—	—	—	—	0000
0010	mileo	15:0	_				—	_	TRISG9	TRISG8	TRISG7	TRISG6	—	_	TRISG3	TRISG2	—		03CC
6620	PORTG	31:16	_			_	—	—	—	—		_	—	—	—	—	—	—	0000
0020	TOKTO	15:0	_				—	_	RG9	RG8	RG7	RG6	—	_	RG3 ⁽²⁾	RG2 ⁽²⁾	—		xxxx
6630	LATG	31:16	—		—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	Linio	15:0	—	—	—	_	—	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	—	—	xxxx
6640	ODCG	31:16	—		—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0040	0000	15:0	_				_		ODCG9	ODCG8	ODCG7	ODCG6	—	_	ODCG3	ODCG2	—		0000
6650	CNPUG	31:16	_				_		—			—	—	_	—		—		0000
0000		15:0	_				_		CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	_	CNPUG3	CNPUG2	—		0000
6660	CNPDG	31:16	—		—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	—	—	—	_	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	—	CNPDG3	CNPDG2	—	—	0000
6670	CNCONG	31:16	—	—	—	_	—	—	—	—		—	—	—	—	—	—	—	0000
0010	onconc	15:0	ON	—	SIDL	_	—	—	—	—		—	—	—	—	—	—	—	0000
6680	CNENG	31:16	_				_	_	—			—	—	_	—		—		0000
0000	SHEINO	15:0	_	—	—	_	—	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	_	CNIEG3	CNIEG2	—	—	0000
		31:16		—	—		—	_	—	-	—	—	—	_	—	—	—		0000
6690	CNSTATG	15:0	_	—	—	_	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	CN STATG3	CN STATG2	_	_	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

18.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard. Figure 18-1 illustrates the l^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

		0/1	<u></u>																
ess	-	¢,								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6440		31:16	_				—			—		—			—	—		—	0000
0440	U3DKG.	15:0					_		Bau	d Rate Gen	erator Pres	caler			-				0000
6600		31:16	_	_	—	_		_	_	—			_	_			_	—	0000
0000	OHMODE	15:0	ON		SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	114STA(1)	31:16	_	_	—	_		_	_	ADM_EN				ADDF	R<7:0>				0000
0010	04017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620		31:16	—		_	_		_		—			_	_	_	—	_	—	0000
0020	OFINILO	15:0	—		_	_		_		TX8				Transmit	Register				0000
6630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OHIVINEO	15:0	—		_	_		_		RX8				Receive	Register				0000
6640		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	0 10100	15:0							Bau	d Rate Gen	erator Pres	caler						•	0000
6800	U5MODE(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	COMODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA(1,2)	31:16	—	—	—	_	—	_	—	ADM_EN				ADDR	R<7:0>	1		1	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
0020	001/11/20	15:0	—	_	—	_	—	_	_	TX8				Transmit	Register				0000
6830	U5RXRFG(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
	00.04.20	15:0	—	_	—	_	—	_	_	RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
00.0		15:0							Bau	d Rate Gene	erator Pres	caler							0000

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

NOTES:

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess				Bits															
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D 000	01001	31:16		_	_	_	ABAT		REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	CICON	15:0	ON	—	SIDLE	—	CANBUSY	_	—	_	_	—	_		D	NCNT<4:0>			0000
P010	CICEC	31:16	_	_	_	—		_	—		_	WAKFIL	_	_	_	SI	EG2PH<2:0	>	0000
BUIU	CICEG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0	>		PRSEG<2:0	>	SJW	<1:0>			BRP<	5:0>			0000
B020	CUNT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	—	-	-	—	—	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
D020	CIINI	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF			_	—				MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16				—	_		—	_	—		_	—	_	_	_	—	0000
8000	011/20	15:0	—	—	—			FILHIT<4:0	>		—		-	1	CODE<6:0>		1		0040
B040	C1TREC	31:16	—	—	—	—	—	_	—	—	—	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
Bollo	office	15:0				TERRC	NT<7:0>		•					RERRCN	VT<7:0>				0000
B050	C1ESTAT	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
8000	01101/1	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	C1RXOVE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
8000	01101011	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
B070	C1TMR	31:16								CANTS<	:15:0>								0000
20.0		15:0							CA	NTSPRE<15	:0>				-			l	0000
B080	C1RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
8000	Onotino	15:0								EID<1	5:0>						-		XXXX
BUOU	C1RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
D000	Onotim	15:0								EID<1	5:0>								xxxx
POAD	C1PVM2	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
BUAU	CTRAIVIZ	15:0								EID<1	5:0>								xxxx
DUDU		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
DUDU	CTRAINS	15:0								EID<1	5:0>								xxxx
DOCO		31:16	FLTEN3	MSEL	.3<1:0>			FSEL3<4:0	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
DUCU	CIFLICONU	15:0	FLTEN1	MSEL	.1<1:0>			FSEL1<4:0	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
PODO		31:16	FLTEN7	MSEL	.7<1:0>			FSEL7<4:0	>		FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>			0000
PODO	CIFLICONI	15:0	FLTEN5	MSEL	.5<1:0>			FSEL5<4:0	>		FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>			0000
DOLO		31:16	FLTEN11	MSEL	11<1:0>			FSEL11<4:0)>		FLTEN10	MSEL1	0<1:0>		F	SEL10<4:0>	•		0000
DUEU	C IFLI CON2	15:0	FLTEN9	MSEL	.9<1:0>			FSEL9<4:0	>		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000
DUEU		31:16	FLTEN15	EN15 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000															
DUFU	GIFLICONS	15:0	FLTEN13	MSEL	13<1:0>			FSEL13<4:0)>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>			0000
D140	C1RXFn	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx
D140	(n = 0-15)	15:0								EID<1	5:0>								XXXX

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

NOTES:

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Tomp Bango	Max. Frequency
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family
DC5	VBOR-3.6V	-40°C to +105°C	40 MHz

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD		PINT + PI/c)	W
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP, 10 mm x 10 mm	θJA	55	-	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 12 mm x 12 mm	θJA	52	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 14 mm x 14 mm	θJA	50		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Conditions							
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		_	ns	—			
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2			ns	—			
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 32-9:SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		_	ns	_			
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2		—	ns	-			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	n Limits	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC			
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B