

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                   |
| Core Size                  | 32-Bit Single-Core                                                             |
| Speed                      | 40MHz                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG          |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                   |
| Number of I/O              | 81                                                                             |
| Program Memory Size        | 128KB (128K x 8)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 16К х 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                    |
| Data Converters            | A/D 48x10b                                                                     |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 100-TQFP                                                                       |
| Supplier Device Package    | 100-TQFP (14x14)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128l-v-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 3.2 Architecture Overview

The MIPS32<sup>®</sup> M4K<sup>®</sup> processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e<sup>®</sup> Support
- · Enhanced JTAG (EJTAG) Controller

#### 3.2.1 EXECUTION UNIT

The MIPS32<sup>®</sup> M4K<sup>®</sup> processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation.

The execution unit includes:

- · 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

### 3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32<sup>®</sup> M4K<sup>®</sup> processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

# TABLE 3-1:MIPS32<sup>®</sup> M4K<sup>®</sup> PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/<br/>DIVIDE UNIT LATENCIES AND REPEAT RATES

| Op code                 | Operand Size (mul rt) (div rs) | Latency | Repeat Rate |
|-------------------------|--------------------------------|---------|-------------|
| MULT/MULTU, MADD/MADDU, | 16 bits                        | 1       | 1           |
| MSUB/MSUBU              | 32 bits                        | 2       | 2           |
| MUL                     | 16 bits                        | 2       | 1           |
|                         | 32 bits                        | 3       | 2           |
| DIV/DIVU                | 8 bits                         | 12      | 11          |
|                         | 16 bits                        | 19      | 18          |
|                         | 24 bits                        | 26      | 25          |
|                         | 32 bits                        | 33      | 32          |

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32<sup>®</sup> architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

#### 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e<sup>®</sup>, is also available by accessing the CP0 registers, listed in Table 3-2.

| Register<br>Number | Register<br>Name        | Function                                                                 |  |  |  |  |  |  |  |  |  |
|--------------------|-------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 0-6                | Reserved                | Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.               |  |  |  |  |  |  |  |  |  |
| 7                  | HWREna                  | Enables access via the RDHWR instruction to selected hardware registers. |  |  |  |  |  |  |  |  |  |
| 8                  | BadVAddr <sup>(1)</sup> | Reports the address for the most recent address-related exception.       |  |  |  |  |  |  |  |  |  |
| 9                  | Count <sup>(1)</sup>    | Processor cycle count.                                                   |  |  |  |  |  |  |  |  |  |
| 10                 | Reserved                | Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.               |  |  |  |  |  |  |  |  |  |
| 11                 | Compare <sup>(1)</sup>  | Timer interrupt control.                                                 |  |  |  |  |  |  |  |  |  |
| 12                 | Status <sup>(1)</sup>   | Processor status and control.                                            |  |  |  |  |  |  |  |  |  |
| 12                 | IntCtl <sup>(1)</sup>   | Interrupt system status and control.                                     |  |  |  |  |  |  |  |  |  |
| 13                 | Cause <sup>(1)</sup>    | Cause of last general exception.                                         |  |  |  |  |  |  |  |  |  |
| 14                 | EPC <sup>(1)</sup>      | Program counter at last exception.                                       |  |  |  |  |  |  |  |  |  |
| 15                 | PRId                    | Processor identification and revision.                                   |  |  |  |  |  |  |  |  |  |
| 15                 | EBASE                   | Exception vector base register.                                          |  |  |  |  |  |  |  |  |  |
| 16                 | Config                  | Configuration register.                                                  |  |  |  |  |  |  |  |  |  |
| 16                 | Config1                 | Configuration register 1.                                                |  |  |  |  |  |  |  |  |  |
| 16                 | Config2                 | Configuration register 2.                                                |  |  |  |  |  |  |  |  |  |
| 16                 | Config3                 | Configuration register 3.                                                |  |  |  |  |  |  |  |  |  |
| 17-22              | Reserved                | Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.               |  |  |  |  |  |  |  |  |  |
| 23                 | Debug <sup>(2)</sup>    | Debug control and exception status.                                      |  |  |  |  |  |  |  |  |  |
| 24                 | DEPC <sup>(2)</sup>     | Program counter at last debug exception.                                 |  |  |  |  |  |  |  |  |  |
| 25-29              | Reserved                | Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.               |  |  |  |  |  |  |  |  |  |
| 30                 | ErrorEPC <sup>(1)</sup> | Program counter at last error.                                           |  |  |  |  |  |  |  |  |  |
| 31                 | DESAVE <sup>(2)</sup>   | Debug handler scratchpad register.                                       |  |  |  |  |  |  |  |  |  |

Note 1: Registers used in exception processing.

**2:** Registers used during debug.



### FIGURE 4-2: MEMORY MAP FOR DEVICES WITH 128 KB OF PROGRAM MEMORY + 16 KB RAM

documentation for information).

### 6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

#### REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit<sup>(1)</sup>
  - 1 = Enable FRC as the clock source for the USB clock source
  - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
  - 1 = Enable Secondary Oscillator
  - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
  - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

**Note:** Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

#### REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits<sup>(1)</sup>

- 1111 = Reserved; do not use
- 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
  - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
  - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|--|--|
| 24.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |  |  |
| 31:24        | ROTRIM<8:1>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |  |  |
| 00.10        | R/W-0             | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |  |
| 23:10        | ROTRIM<0>         | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |  |  |  |  |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |  |
| 15:8         | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |  |  |  |  |  |  |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |  |  |
|              | _                 | _                 | _                 | _                 | _                 | _                 | _                | _                |  |  |  |  |  |  |  |

#### REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

| Legend:           | y = Value set from Config | uration bits on POR                |                    |  |  |  |  |
|-------------------|---------------------------|------------------------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit          | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
| -n = Value at POR | '1' = Bit is set          | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

**Note:** While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

#### REGISTER 10-7: U1IE: USB INTERRUPT ENABLE REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0        |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------------|
| 21.24        | U-0 U-0           |                   | U-0               | U-0               | U-0               | U-0               | U-0              | U-0                     |
| 31.24        | —                 | —                 | —                 |                   | —                 | —                 | —                | —                       |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0                     |
| 23.10        | —                 | —                 | —                 |                   | —                 | —                 | —                | —                       |
| 15.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0                     |
| 15.0         | _                 | —                 |                   | _                 | —                 | _                 | _                | —                       |
|              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0                   |
| 7:0          | STALLE            |                   |                   |                   | TDNIE             | SOEIE             |                  | URSTIE <sup>(2)</sup>   |
|              | STALLIE           | ATTACHIE          | RESUMEIE          | IDLEIE            |                   | JULIE             |                  | DETACHIE <sup>(3)</sup> |
|              |                   | 1                 |                   |                   |                   | 1                 |                  |                         |

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

#### bit 31-8 Unimplemented: Read as '0'

| bit 7 | STALLIE: STALL Handshake Interrupt Enable bit |
|-------|-----------------------------------------------|
|       | 1 = STALL interrupt enabled                   |
|       | 0 = STALL interrupt disabled                  |

#### bit 6 **ATTACHIE:** ATTACH Interrupt Enable bit 1 = ATTACH interrupt enabled

0 = ATTACH interrupt disabled

#### bit 5 **RESUMEIE:** RESUME Interrupt Enable bit

- 1 = RESUME interrupt enabled
- 0 = RESUME interrupt disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
  - 1 = Idle interrupt enabled
  - 0 = Idle interrupt disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
  - 1 = TRNIF interrupt enabled
  - 0 = TRNIF interrupt disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
  - 1 = SOFIF interrupt enabled
  - 0 = SOFIF interrupt disabled
- bit 1 UERRIE: USB Error Interrupt Enable bit<sup>(1)</sup>
  - 1 = USB Error interrupt enabled
  - 0 = USB Error interrupt disabled
- bit 0 **URSTIE:** USB Reset Interrupt Enable bit<sup>(2)</sup>
  - 1 = URSTIF interrupt enabled
  - 0 = URSTIF interrupt disabled
  - DETACHIE: USB Detach Interrupt Enable bit<sup>(3)</sup>
  - 1 = DATTCHIF interrupt enabled
  - 0 = DATTCHIF interrupt disabled

**Note 1:** For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

#### TABLE 11-9: PORTE REGISTER MAP FOR 100-PIN DEVICES ONLY

| ess                      |                                | 0        |       |       |       |       |       |       |              | E            | Bits         |              |              |              |              |              |              |              |               |
|--------------------------|--------------------------------|----------|-------|-------|-------|-------|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Virtual Addr<br>(BF88_#) | Registe<br>Name <sup>(1)</sup> | Bit Kang | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9         | 24/8         | 23/7         | 22/6         | 21/5         | 20/4         | 19/3         | 18/2         | 17/1         | 16/0         | All<br>Resets |
| 6400                     | ANSELE                         | 31:16    |       | _     | —     | —     | —     | —     | —            | —            | -            | -            | -            |              | —            | —            | —            | —            | 0000          |
| 0400                     | ANOLLE                         | 15:0     | —     |       | —     | _     | —     |       | ANSELE9      | ANSELE8      | ANSELE7      | ANSELE6      | ANSELE5      | ANSELE4      | —            | ANSELE2      | ANSELE1      | ANSELE0      | 03F7          |
| 6410                     | TRISE                          | 31:16    | —     | _     | —     | —     | —     | —     | —            | _            | —            | —            | —            | —            | —            | —            | —            | _            | 0000          |
| 0110                     | ITRIOE                         | 15:0     | —     | _     | —     | —     | —     | _     | TRISE9       | TRISE8       | TRISE7       | TRISE6       | TRISE5       | TRISE4       | TRISE3       | TRISE2       | TRISE1       | TRISE0       | 03FF          |
| 6420                     | PORTE                          | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.20                     |                                | 15:0     | —     | -     | —     | —     | —     | _     | RE9          | RE8          | RE7          | RE6          | RE5          | RE4          | RE3          | RE2          | RE1          | RE0          | xxxx          |
| 6440                     | LATE                           | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.10                     | 2,112                          | 15:0     | —     | -     | —     | —     | —     | _     | LATE9        | LATE8        | LATE7        | LATE6        | LATE5        | LATE4        | LATE3        | LATE2        | LATE1        | LATE0        | xxxx          |
| 6440                     | ODCE                           | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.10                     |                                | 15:0     | —     | -     | —     | —     | —     | _     | ODCE9        | ODCE8        | ODCE7        | ODCE6        | ODCE5        | ODCE4        | ODCE3        | ODCE2        | ODCE1        | ODCE0        | 0000          |
| 6450                     | CNPUE                          | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.00                     | 0.11 02                        | 15:0     | —     | -     | —     | —     | —     | _     | CNPUE9       | CNPUE8       | CNPUE7       | CNPUE6       | CNPUE5       | CNPUE4       | CNPDE3       | CNPUE2       | CNPUE1       | CNPUE0       | 0000          |
| 6460                     | CNPDF                          | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.00                     | 0.11.02                        | 15:0     | —     | -     | —     | —     | —     | _     | CNPDE9       | CNPDE8       | CNPDE7       | CNPDE6       | CNPDE5       | CNPDE4       | CNPDE3       | CNPDE2       | CNPDE1       | CNPDE0       | 0000          |
| 6470                     | CNCONE                         | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | _            | —            | —            | —            | _            | 0000          |
| 0.1.0                    | 0.100.12                       | 15:0     | ON    | -     | SIDL  | —     | —     | _     | —            | -            | —            | —            | —            | _            | —            | —            | —            | _            | 0000          |
| 6480                     | CNENE                          | 31:16    | —     | -     | —     | —     | —     | _     | —            | -            | —            | —            | —            | -            | —            | —            | —            | -            | 0000          |
| 0.00                     | S.LENE                         | 15:0     | _     | _     | —     | —     | —     | _     | CNIEE9       | CNIEE8       | CNIEE7       | CNIEE6       | CNIEE5       | CNIEE4       | CNIEE3       | CNIEE2       | CNIEE1       | CNIEE0       | 0000          |
|                          |                                | 31:16    | —     | —     | —     | —     | —     | —     | —            | —            | —            | —            | —            | —            | —            |              | —            | —            | 0000          |
| 6490                     | CNSTATE                        | 15:0     | _     | _     | _     | _     | —     | _     | CN<br>STATE9 | CN<br>STATE8 | CN<br>STATE7 | CN<br>STATE6 | CN<br>STATE5 | CN<br>STATE4 | CN<br>STATE3 | CN<br>STATE2 | CN<br>STATE1 | CN<br>STATE0 | 0000          |

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

#### REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER (CONTINUED)('x' = 2 THROUGH 5)

- bit 3 **T32:** 32-Bit Timer Mode Select bit<sup>(2)</sup> 1 = Odd numbered and even numbered timers form a 32-bit timer 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit<sup>(3)</sup>
  - 1 = External clock from TxCK pin
  - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
  - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
  - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
  - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

#### TABLE 14-1: WATCHDOG TIMER REGISTER MAP

| ess                      |                                 | â         |       |       |       |       |       |       |      |      | Bits |      |      |           |      |      |          |        | (0         |
|--------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|-----------|------|------|----------|--------|------------|
| Virtual Addr<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4      | 19/3 | 18/2 | 17/1     | 16/0   | All Resets |
| 0000                     |                                 | 31:16     | —     | —     | _     | —     | —     | —     | —    | _    | —    | _    | _    | _         | —    | —    | —        | _      | 0000       |
| 0000                     | WDICON                          | 15:0      | ON    | —     | —     | —     |       | —     | —    | —    | —    |      | SV   | VDTPS<4:( | )>   |      | WDTWINEN | WDTCLR | 0000       |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### **19.1 Control Registers**

#### TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP

| ress                   |                       | Bits     |        |         |        |       |        |       |       |            |             |         |       |          | s          |      |          |       |           |
|------------------------|-----------------------|----------|--------|---------|--------|-------|--------|-------|-------|------------|-------------|---------|-------|----------|------------|------|----------|-------|-----------|
| Virtual Add<br>(BF80_# | Registe<br>Name       | Bit Rang | 31/15  | 30/14   | 29/13  | 28/12 | 27/11  | 26/10 | 25/9  | 24/8       | 23/7        | 22/6    | 21/5  | 20/4     | 19/3       | 18/2 | 17/1     | 16/0  | All Reset |
| <u></u>                |                       | 31:16    | —      | _       | _      | _     | —      | —     | —     | _          | _           | _       | —     | _        | _          | _    | _        | _     | 0000      |
| 6000                   | UTWODE                | 15:0     | ON     | —       | SIDL   | IREN  | RTSMD  | —     | UEN   | <1:0>      | WAKE        | LPBACK  | ABAUD | RXINV    | BRGH       | PDSE | L<1:0>   | STSEL | 0000      |
| 6010                   | 111574(1)             | 31:16    | —      | —       | _      | —     | —      | —     | —     | ADM_EN     |             |         |       | ADDF     | R<7:0>     |      |          |       | 0000      |
| 0010                   | UISIA                 | 15:0     | UTXISI | EL<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT       | URXIS       | EL<1:0> | ADDEN | RIDLE    | PERR       | FERR | OERR     | URXDA | FFFF      |
| 6020                   |                       | 31:16    | _      | —       | _      |       |        |       | _     | —          | —           | —       | —     | —        | —          | —    | —        | —     | 0000      |
| 0020                   | 0020 OTTAKEG          | 15:0     |        | —       | _      |       |        |       | _     | TX8        |             |         |       | Transmit | t Register |      |          |       | 0000      |
| 6030                   | 6030 U1RXREG          | 31:16    | —      | —       | —      | —     | —      | —     | —     | —          |             | —       | —     |          | —          | —    |          |       | 0000      |
|                        | 01104120              | 15:0     | —      | —       | —      | —     | —      | —     | —     | RX8        |             |         |       | Receive  | Register   |      |          |       | 0000      |
| 6040                   | U1BRG <sup>(1)</sup>  | 31:16    | _      | —       | —      | —     | —      | —     | —     | —          | —           | —       | —     | —        | —          | —    | —        | —     | 0000      |
|                        |                       | 15:0     |        | -       |        | -     | -      |       | Bau   | d Rate Gen | erator Pres | caler   |       |          |            |      |          |       | 0000      |
| 6200                   | U2MODE <sup>(1)</sup> | 31:16    | —      | —       |        |       | —      | —     | —     | _          | —           | —       | —     | —        | —          | —    |          | —     | 0000      |
|                        |                       | 15:0     | ON     | _       | SIDL   | IREN  | RTSMD  | —     | UEN   | <1:0>      | WAKE        | LPBACK  | ABAUD | RXINV    | BRGH       | PDSE | L<1:0>   | STSEL | 0000      |
| 6210                   | U2STA <sup>(1)</sup>  | 31:16    | —      | —       | —      | —     | —      | —     |       | ADM_EN     |             |         | r     | ADDF     | R<7:0>     | r    | 1        | 1     | 0000      |
|                        |                       | 15:0     | UTXISI | EL<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT       | URXIS       | EL<1:0> | ADDEN | RIDLE    | PERR       | FERR | OERR     | URXDA | FFFI      |
| 6220                   | U2TXREG               | 31:16    | _      | —       |        | —     | —      | —     | _     | —          | —           | —       | —     |          | —          | —    |          |       | 0000      |
|                        |                       | 15:0     | —      | —       | _      | —     |        | —     | _     | TX8        |             |         |       | Transmit | t Register |      |          |       | 0000      |
| 6230                   | U2RXREG               | 31:16    | _      |         |        |       |        |       | _     | _          | —           | —       | —     |          |            | —    | —        | —     | 0000      |
|                        |                       | 15:0     | _      |         |        |       |        |       | _     | RX8        |             |         |       | Receive  | Register   |      |          |       | 0000      |
| 6240                   | U2BRG <sup>(1)</sup>  | 31:16    |        |         | _      |       | —      | _     |       |            |             | . —     |       |          | —          | _    |          |       | 0000      |
|                        |                       | 15:0     |        |         | 1      |       |        |       | Bau   | d Rate Gen | erator Pres | caler   |       |          |            |      |          |       | 0000      |
| 6400                   | U3MODE <sup>(1)</sup> | 31:16    | _      |         | -      | -     | -      | —     | —     |            | —           | —       |       | —        | —          |      | <u> </u> | -     | 0000      |
|                        |                       | 15.0     | ON     | _       | SIDL   | IREN  | RTSMD  | —     | UEN   | <1:0>      | WAKE        | LPBACK  | ABAUD | RXINV    | BRGH       | PDSE | L<1:0>   | STSEL | 0000      |
| 6410                   | U3STA <sup>(1)</sup>  | 31:16    | —      |         | —      | —     | —      | —     | —     | ADM_EN     |             |         |       | ADDF     | ₹<7:0>     |      | 0500     |       | 0000      |
|                        |                       | 15:0     | UTXISI | =L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT       | URXIS       | EL<1:0> | ADDEN | RIDLE    | PERR       | FERR | OERR     | URXDA | FFFF      |
| 6420                   | <b>U3TXREG</b>        | 31:16    |        |         |        |       |        |       |       |            |             | _       |       |          |            | _    |          |       | 0000      |
|                        |                       | 15:0     | _      |         | -      |       |        | _     | _     | TX8        |             |         |       | Transmit | t Register |      |          |       | 0000      |
| 6430                   | <b>U3RXREG</b>        | 31:16    | _      |         | -      |       |        | _     | _     | —          | _           | —       | —     |          |            | —    | —        | —     | 0000      |
|                        | 430 U3RXREG           | 15:0     | —      | —       | —      | —     | —      | —     | —     | RX8        |             |         |       | Receive  | Register   |      |          |       | 0000      |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

#### REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit<sup>(4)</sup>
  - 1 = RTC Value registers can be written to by the user
    - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
  - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid
  - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit<sup>(5)</sup>
  - 1 = Second half period of a second
  - 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
  - 1 = RTCC clock output enabled clock presented onto an I/O
  - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
  - 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
  - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
  - 4: The RTCWREN bit can be set only when the write sequence is enabled.
  - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

**Note:** This register is reset only on a Power-on Reset (POR).

#### TABLE 22-1: ADC REGISTER MAP (CONTINUED)

| ess                                                            |                  | ø                                  |                                    | Bits                               |       |       |       |       |         |              |          |           |      |      |      |      |      |      |           |
|----------------------------------------------------------------|------------------|------------------------------------|------------------------------------|------------------------------------|-------|-------|-------|-------|---------|--------------|----------|-----------|------|------|------|------|------|------|-----------|
| Virtual Addr<br>(BF80_#)                                       | Register<br>Name | Bit Range                          | 31/15                              | 30/14                              | 29/13 | 28/12 | 27/11 | 26/10 | 25/9    | 24/8         | 23/7     | 22/6      | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Reset |
| 9100                                                           | ADC1BUF9         | 31:16                              |                                    | ADC Result Word 9 (ADC1BUF9<31:0>) |       |       |       |       |         |              |          |           | 0000 |      |      |      |      |      |           |
|                                                                |                  | 15:0                               |                                    |                                    |       |       |       |       |         |              |          |           |      |      |      |      |      |      | 0000      |
| 9110                                                           | ADC1BUFA         | 31:16                              | ADC Result Word A (ADC1BUFA<31:0>) |                                    |       |       |       |       |         |              |          |           | 0000 |      |      |      |      |      |           |
|                                                                |                  | 15.0                               |                                    |                                    |       |       |       |       |         |              |          |           | 0000 |      |      |      |      |      |           |
| 9120 ADC1BUFB ADC Result Word B (ADC1BUFB<31:0>)               |                  |                                    |                                    |                                    |       |       |       |       |         | 0000         |          |           |      |      |      |      |      |      |           |
| 21:16                                                          |                  |                                    |                                    |                                    |       |       |       |       |         |              | 0000     |           |      |      |      |      |      |      |           |
| 9130 ADC1BUFC 51.10<br>15:0 ADC Result Word C (ADC1BUFC<31:0>) |                  |                                    |                                    |                                    |       |       |       |       | 0000    |              |          |           |      |      |      |      |      |      |           |
|                                                                | 31:16            |                                    |                                    |                                    |       |       |       |       |         | 0000         |          |           |      |      |      |      |      |      |           |
| 9140                                                           | ADC1BUFD         | ADC Result Word D (ADC1BUFD<31:0>) |                                    |                                    |       |       |       |       |         |              | 0000     |           |      |      |      |      |      |      |           |
| 0450                                                           |                  |                                    |                                    |                                    |       |       |       |       |         |              |          | 0000      |      |      |      |      |      |      |           |
| 9150                                                           | ADCIBUFE         | 15:0                               |                                    |                                    |       |       |       |       | ADC Res | SUIL VVORD E | (ADC1BUF | ⊑≦31:0>)  |      |      |      |      |      |      | 0000      |
| 9160                                                           |                  | 31:16                              |                                    |                                    |       |       |       |       |         | sult Word E  |          | E<31.05)  |      |      |      |      |      |      | 0000      |
| 9100                                                           | ADGIBUFF         | 15:0                               |                                    |                                    |       |       |       |       | ADC Res |              |          | 1 ~51.0~) |      |      |      |      |      |      | 0000      |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

| REGISTE  | R 23-3:                                   | C1INT: CAN INTERRUPT REGISTER (CONTINUED)                                                                                                 |
|----------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| bit 14   | <b>WAKIF:</b> 0<br>1 = A bus<br>0 = A bus | CAN Bus Activity Wake-up Interrupt Flag bit<br>s wake-up activity interrupt has occurred<br>s wake-up activity interrupt has not occurred |
| bit 13   | <b>CERRIF:</b><br>1 = A CA<br>0 = A CA    | CAN Bus Error Interrupt Flag bit<br>N bus error has occurred<br>N bus error has not occurred                                              |
| bit 12   | SERRIF:                                   | System Error Interrupt Flag bit <sup>(1)</sup>                                                                                            |
|          | 1 = A sys<br>0 = A sys                    | tem error occurred (typically an illegal address was presented to the system bus) tem error has not occurred                              |
| bit 11   | <b>RBOVIF:</b>                            | Receive Buffer Overflow Interrupt Flag bit                                                                                                |
|          | 1 = A rec<br>0 = A rec                    | eive buffer overflow has occurred<br>eive buffer overflow has not occurred                                                                |
| bit 10-4 | Unimpler                                  | mented: Read as '0'                                                                                                                       |
| bit 3    | MODIF: (                                  | CAN Mode Change Interrupt Flag bit                                                                                                        |
|          | 1 = A CA<br>0 = A CA                      | N module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP)<br>N module mode change has not occurred                      |
| bit 2    | CTMRIF:                                   | CAN Timer Overflow Interrupt Flag bit                                                                                                     |
|          | 1 = A CA<br>0 = A CA                      | N timer (CANTMR) overflow has occurred<br>N timer (CANTMR) overflow has not occurred                                                      |
| bit 1    | RBIF: Re                                  | ceive Buffer Interrupt Flag bit                                                                                                           |
|          | 1 = A rec<br>0 = A rec                    | eive buffer interrupt is pending<br>eive buffer interrupt is not pending                                                                  |
| bit 0    | TBIF: Tra                                 | insmit Buffer Interrupt Flag bit                                                                                                          |
|          | 1 = A trar                                | nsmit buffer interrupt is pending                                                                                                         |

- 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (C1CON<15>).

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 04.04        | R/W-0             | R/W-0             | R/W-0 R/W-0 R/W-0 |                   | R/W-0             | R/W-0             | R/W-0            |                  |  |
| 31.24        | FLTEN7            | MSEL              | 7<1:0>            | FSEL7<4:0>        |                   |                   |                  |                  |  |
| 22:16        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 23.10        | FLTEN6 MSEL6<1:0> |                   |                   | FSEL6<4:0>        |                   |                   |                  |                  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 10.0         | FLTEN5            | MSEL              | 5<1:0>            | FSEL5<4:0>        |                   |                   |                  |                  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 7.0          | FLTEN4            | MSEL4<1:0>        |                   | FSEL4<4:0>        |                   |                   |                  |                  |  |

#### **REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1**

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

| bit 31    | FLTEN7: Filter 7 Enable bit                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul><li>1 = Filter is enabled</li><li>0 = Filter is disabled</li></ul>                                                                                                         |
| bit 30-29 | MSEL7<1:0>: Filter 7 Mask Select bits                                                                                                                                          |
|           | <ul> <li>11 = Acceptance Mask 3 selected</li> <li>10 = Acceptance Mask 2 selected</li> <li>01 = Acceptance Mask 1 selected</li> <li>00 = Acceptance Mask 0 selected</li> </ul> |
| bit 28-24 | FSEL7<4:0>: FIFO Selection bits                                                                                                                                                |
|           | 11111 = Reserved                                                                                                                                                               |
|           | •                                                                                                                                                                              |
|           |                                                                                                                                                                                |
|           | 10000 = Reserved                                                                                                                                                               |
|           | 01111 = Message matching filter is stored in FIFO buffer 15                                                                                                                    |
|           | •                                                                                                                                                                              |
|           | •                                                                                                                                                                              |
|           | 00000 = Message matching filter is stored in FIFO buffer 0                                                                                                                     |
| bit 23    | FLTEN6: Filter 6 Enable bit                                                                                                                                                    |
|           | <ul><li>1 = Filter is enabled</li><li>0 = Filter is disabled</li></ul>                                                                                                         |
| bit 22-21 | MSEL6<1:0>: Filter 6 Mask Select bits                                                                                                                                          |
|           | 11 = Acceptance Mask 3 selected                                                                                                                                                |

- - 10 = Acceptance Mask 2 selected
  - 01 = Acceptance Mask 1 selected
  - 00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

|--|

| АС СНА        | RACTER  | ISTICS                  |                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$ |      |       |                        |  |  |
|---------------|---------|-------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------------------|--|--|
| Param.<br>No. | Symbol  | Charact                 | eristics                      | Min. <sup>(1)</sup>                                                                                                                                                                                                                                                               | Max. | Units | Conditions             |  |  |
| IM10          | TLO:SCL | Clock Low Time          | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | μs    | —                      |  |  |
|               |         |                         | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | μs    | —                      |  |  |
|               |         |                         | 1 MHz mode<br><b>(Note 2)</b> | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μs    | _                      |  |  |
| IM11          | THI:SCL | Clock High Time         | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | _    | μS    | —                      |  |  |
|               |         |                         | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | _    | μS    | —                      |  |  |
|               |         |                         | 1 MHz mode<br><b>(Note 2)</b> | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    | —                      |  |  |
| IM20          | TF:SCL  | SDAx and SCLx           | 100 kHz mode                  | _                                                                                                                                                                                                                                                                                 | 300  | ns    | CB is specified to be  |  |  |
|               |         | Fall Time               | 400 kHz mode                  | 20 + 0.1 Св                                                                                                                                                                                                                                                                       | 300  | ns    | from 10 to 400 pF      |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | —                                                                                                                                                                                                                                                                                 | 100  | ns    |                        |  |  |
| IM21          | TR:SCL  | SDAx and SCLx           | 100 kHz mode                  | _                                                                                                                                                                                                                                                                                 | 1000 | ns    | CB is specified to be  |  |  |
|               |         | Rise Time               | 400 kHz mode                  | 20 + 0.1 Св                                                                                                                                                                                                                                                                       | 300  | ns    | from 10 to 400 pF      |  |  |
|               |         |                         | 1 MHz mode<br><b>(Note 2)</b> | _                                                                                                                                                                                                                                                                                 | 300  | ns    |                        |  |  |
| IM25          | TSU:DAT | Data Input              | 100 kHz mode                  | 250                                                                                                                                                                                                                                                                               |      | ns    |                        |  |  |
|               |         | Setup Time              | 400 kHz mode                  | 100                                                                                                                                                                                                                                                                               |      | ns    |                        |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | 100                                                                                                                                                                                                                                                                               | —    | ns    |                        |  |  |
| IM26          | THD:DAT | Data Input<br>Hold Time | 100 kHz mode                  | 0                                                                                                                                                                                                                                                                                 | —    | μs    |                        |  |  |
|               |         |                         | 400 kHz mode                  | 0                                                                                                                                                                                                                                                                                 | 0.9  | μS    |                        |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | 0                                                                                                                                                                                                                                                                                 | 0.3  | μS    |                        |  |  |
| IM30          | TSU:STA | Start Condition         | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μs    | Only relevant for      |  |  |
|               |         | Setup Time              | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μs    | Repeated Start         |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    |                        |  |  |
| IM31          | THD:STA | Start Condition         | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | μs    | After this period, the |  |  |
|               |         | Hold Time               | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    | first clock pulse is   |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    | generated              |  |  |
| IM33          | Tsu:sto | Stop Condition          | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | μs    |                        |  |  |
|               |         | Setup Time              | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    |                        |  |  |
|               |         |                         | 1 MHz mode<br>(Note 2)        | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | —    | μS    |                        |  |  |
| IM34          | THD:STO | Stop Condition          | 100 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | ns    |                        |  |  |
|               |         | Hold Time               | 400 kHz mode                  | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   |      | ns    |                        |  |  |
|               |         |                         | 1 MHz mode<br><b>(Note 2)</b> | Трв * (BRG + 2)                                                                                                                                                                                                                                                                   | _    | ns    |                        |  |  |

**Note 1:** BRG is the value of the  $I^2C$  Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**3:** The typical value for this parameter is 104 ns.

#### TABLE 31-34: ADC MODULE SPECIFICATIONS

|                                                       | AC CHAR      | ACTERISTICS                                          | $\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |             |                                  |        |                                                                                                                                  |  |  |  |
|-------------------------------------------------------|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Param.<br>No.                                         | Symbol       | Characteristics                                      | Min.                                                                                                                                                                                                                                                                                               | Typical     | Max.                             | Units  | Conditions                                                                                                                       |  |  |  |
| Device                                                | Supply       |                                                      |                                                                                                                                                                                                                                                                                                    |             |                                  |        |                                                                                                                                  |  |  |  |
| AD01                                                  | AVDD         | Module VDD Supply                                    | Greater of<br>VDD – 0.3<br>or 2.5                                                                                                                                                                                                                                                                  |             | Lesser of<br>VDD + 0.3 or<br>3.6 | V      | _                                                                                                                                |  |  |  |
| AD02                                                  | AVss         | Module Vss Supply                                    | Vss                                                                                                                                                                                                                                                                                                | _           | AVDD                             | V      | (Note 1)                                                                                                                         |  |  |  |
| Referen                                               | ce Inputs    |                                                      |                                                                                                                                                                                                                                                                                                    |             |                                  |        |                                                                                                                                  |  |  |  |
| AD05<br>AD05a                                         | Vrefh        | Reference Voltage High                               | AVss + 2.0<br>2.5                                                                                                                                                                                                                                                                                  | _           | AVDD<br>3.6                      | V<br>V | (Note 1)<br>VREFH = AVDD (Note 3)                                                                                                |  |  |  |
| AD06                                                  | Vrefl        | Reference Voltage Low                                | AVss                                                                                                                                                                                                                                                                                               |             | VREFH – 2.0                      | V      | (Note 1)                                                                                                                         |  |  |  |
| AD07                                                  | Vref         | Absolute Reference<br>Voltage (VREFH – VREFL)        | 2.0                                                                                                                                                                                                                                                                                                |             | AVDD                             | V      | (Note 3)                                                                                                                         |  |  |  |
| AD08                                                  | IREF         | Current Drain                                        | _                                                                                                                                                                                                                                                                                                  | 250         | 400                              | μA     | ADC operating                                                                                                                    |  |  |  |
| AD08a                                                 |              |                                                      | —                                                                                                                                                                                                                                                                                                  | —           | 3                                | μA     | ADC off                                                                                                                          |  |  |  |
| Analog                                                | Analog Input |                                                      |                                                                                                                                                                                                                                                                                                    |             |                                  |        |                                                                                                                                  |  |  |  |
| AD12                                                  | VINH-VINL    | Full-Scale Input Span                                | VREFL                                                                                                                                                                                                                                                                                              | _           | VREFH                            | V      | —                                                                                                                                |  |  |  |
| AD13                                                  | VINL         | Absolute VINL Input<br>Voltage                       | AVss – 0.3                                                                                                                                                                                                                                                                                         | _           | AVDD/2                           | V      | —                                                                                                                                |  |  |  |
| AD14                                                  | VIN          | Absolute Input Voltage                               | AVss – 0.3                                                                                                                                                                                                                                                                                         | —           | AVDD + 0.3                       | V      | —                                                                                                                                |  |  |  |
| AD15                                                  | _            | Leakage Current                                      | _                                                                                                                                                                                                                                                                                                  | ±0.001      | ±0.610                           | μA     | $\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10 \ k\Omega \end{array}$ |  |  |  |
| AD17 RIN                                              |              | Recommended<br>Impedance of Analog<br>Voltage Source | —                                                                                                                                                                                                                                                                                                  | _           | 5k                               | Ω      | (Note 1)                                                                                                                         |  |  |  |
| ADC Accuracy – Measurements with External VREF+/VREF- |              |                                                      |                                                                                                                                                                                                                                                                                                    |             |                                  |        |                                                                                                                                  |  |  |  |
| AD20c                                                 | Nr           | Resolution                                           |                                                                                                                                                                                                                                                                                                    | 10 data bit | S                                | bits   | —                                                                                                                                |  |  |  |
| AD21c                                                 | INL          | Integral Non-linearity                               | > -1                                                                                                                                                                                                                                                                                               | —           | < 1                              | LSb    | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.3V                                                                                 |  |  |  |
| AD22c                                                 | DNL          | Differential Non-linearity                           | > -1                                                                                                                                                                                                                                                                                               |             | < 1                              | LSb    | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.3V<br>(Note 2)                                                                     |  |  |  |
| AD23c                                                 | Gerr         | Gain Error                                           | > -1                                                                                                                                                                                                                                                                                               | —           | < 1                              | LSb    | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.3V                                                                                 |  |  |  |
| AD24c                                                 | EOFF         | Offset Error                                         | > -1                                                                                                                                                                                                                                                                                               | _           |                                  |        | VINL = AVSS = 0V,<br>AVDD = 3.3V                                                                                                 |  |  |  |
| AD25c                                                 | _            | Monotonicity                                         |                                                                                                                                                                                                                                                                                                    | _           | —                                |        | Guaranteed                                                                                                                       |  |  |  |

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

**3:** These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

**5:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

#### FIGURE 31-23: EJTAG TIMING CHARACTERISTICS



#### TABLE 31-42: EJTAG TIMING REQUIREMENTS

| AC CHA        | RACTERISTI | cs                                               | Standa<br>(unles<br>Operat | prditions: 2.3V to 3.6V<br>ed)<br>$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp |       |            |
|---------------|------------|--------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Param.<br>No. | Symbol     | Description <sup>(1)</sup>                       | Min.                       | Max.                                                                                                                                          | Units | Conditions |
| EJ1           | Ттсксус    | TCK Cycle Time                                   | 25                         |                                                                                                                                               | ns    | —          |
| EJ2           | Ттскнідн   | TCK High Time                                    | 10                         | —                                                                                                                                             | ns    | —          |
| EJ3           | TTCKLOW    | TCK Low Time                                     | 10                         | —                                                                                                                                             | ns    | —          |
| EJ4           | TTSETUP    | TAP Signals Setup Time Before<br>Rising TCK      | 5                          | -                                                                                                                                             | ns    | _          |
| EJ5           | TTHOLD     | TAP Signals Hold Time After<br>Rising TCK        | 3                          | _                                                                                                                                             | ns    | _          |
| EJ6           | TTDOOUT    | TDO Output Delay Time from<br>Falling TCK        | -                          | 5                                                                                                                                             | ns    | _          |
| EJ7           | TTDOZSTATE | TDO 3-State Delay Time from<br>Falling TCK       | _                          | 5                                                                                                                                             | ns    | _          |
| EJ8           | TTRSTLOW   | TRST Low Time                                    | 25                         |                                                                                                                                               | ns    |            |
| EJ9           | TRF        | TAP Signals Rise/Fall Time, All Input and Output | _                          |                                                                                                                                               | ns    | _          |

**Note 1:** These parameters are characterized, but not tested in manufacturing.

#### 34.0 **PACKAGING INFORMATION**

#### 34.1 **Package Marking Information**

64-Lead TQFP (10x10x1 mm)

