

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128l-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
AN0	16	25	Ι	Analog	
AN1	15	24	Ι	Analog	
AN2	14	23	Ι	Analog	
AN3	13	22	Ι	Analog	
AN4	12	21	Ι	Analog	
AN5	11	20	I	Analog	
AN6	17	26	Ι	Analog	
AN7	18	27	I	Analog	
AN8	21	32	I	Analog	
AN9	22	33	Ι	Analog	
AN10	23	34	Ι	Analog	
AN11	24	35	I	Analog	
AN12	27	41	Ι	Analog	
AN13	28	42	Ι	Analog	
AN14	29	43	I	Analog	
AN15	30	44	Ι	Analog	
AN16	4	10	I	Analog	
AN17	5	11	I	Analog	
AN18	6	12	Ι	Analog	Analog input channels.
AN19	8	14	Ι	Analog	
AN20	62	98	I	Analog	
AN21	64	100	Ι	Analog	
AN22	1	3	I	Analog	
AN23	2	4	Ι	Analog	
AN24	49	76	Ι	Analog	
AN25	50	77	Ι	Analog	
AN26	51	78	I	Analog	
AN27	3	5	I	Analog	
AN28		1	I	Analog	
AN29	—	6	Ι	Analog	
AN30	_	7	I	Analog	
AN31		8	Ι	Analog	
AN32	_	18	I	Analog	
AN33	_	19	Ι	Analog	
AN34		39	Ι	Analog	
AN35		40		Analog	1

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
PMA2	8	14	0	TTL/ST	
PMA3	6	12	0	TTL/ST	
PMA4	5	11	0	TTL/ST	
PMA5	4	10	0	TTL/ST	
PMA6	16	29	0	TTL/ST	
PMA7	22	28	0	TTL/ST	
PMA8	32	50	0	TTL/ST	Parallel Master Port data (Demultiplexed Master mode) or
PMA9	31	49	0	TTL/ST	Address/Data (Multiplexed Master modes)
PMA10	28	42	0	TTL/ST	
PMA11	27	41	0	TTL/ST	
PMA12	24	35	0	TTL/ST	
PMA13	23	34	0	TTL/ST	
PMA14	45	71	0	TTL/ST	
PMA15	44	70	0	TTL/ST	
PMCS1	45	71	0	TTL/ST	
PMCS2	44	70	0	TTL/ST	
PMD0	60	93	I/O	TTL/ST	
PMD1	61	94	I/O	TTL/ST	
PMD2	62	98	I/O	TTL/ST	
PMD3	63	99	I/O	TTL/ST	
PMD4	64	100	I/O	TTL/ST	
PMD5	1	3	I/O	TTL/ST	
PMD6	2	4	I/O	TTL/ST	Parallel Master Port data (Demultiplexed Master mode) o
PMD7	3	5	I/O	TTL/ST	Address/Data (Multiplexed Master modes)
PMD8	—	90	I/O	TTL/ST	
PMD9		89	I/O	TTL/ST	
PMD10	—	88	I/O	TTL/ST	
PMD11	—	87	I/O	TTL/ST	
PMD12	—	79	I/O	TTL/ST	1
PMD13	—	80	I/O	TTL/ST	1
PMD14	—	83	I/O	TTL/ST	1
PMD15	—	84	I/O	TTL/ST	1
PMRD	53	82	0	—	Parallel Master Port Read Strobe
PMWR	52	81	0	—	Parallel Master Port Write Strobe
VBUS ⁽²⁾	34	54	Ι	Analog	USB Bus Power Monitor
•	CMOS = CM ST = Schmit	t Trigger inp	ut with (CMOS level	ls TTL = TTL input buffer P = Power
	-	-			t a USB module. USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Register Name	Function
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
HWREna	Enables access via the RDHWR instruction to selected hardware registers.
BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
Count ⁽¹⁾	Processor cycle count.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
Compare ⁽¹⁾	Timer interrupt control.
Status ⁽¹⁾	Processor status and control.
IntCtl ⁽¹⁾	Interrupt system status and control.
Cause ⁽¹⁾	Cause of last general exception.
EPC ⁽¹⁾	Program counter at last exception.
PRId	Processor identification and revision.
EBASE	Exception vector base register.
Config	Configuration register.
Config1	Configuration register 1.
Config2	Configuration register 2.
Config3	Configuration register 3.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
Debug ⁽²⁾	Debug control and exception status.
DEPC ⁽²⁾	Program counter at last debug exception.
Reserved	Reserved in the PIC32MX1XX/2XX/5XX 64/100-pin family core.
ErrorEPC ⁽¹⁾	Program counter at last error.
DESAVE ⁽²⁾	Debug handler scratchpad register.
	NameReservedHWREnaBadVAddr(1)Count(1)ReservedCompare(1)Status(1)IntCtl(1)Cause(1)EPC(1)PRIdEBASEConfigConfig1Config2Config3ReservedDebug(2)DEPC(2)ReservedErrorEPC(1)

TABLE 3-2. COPROCESSOR UREGISTERS	TABLE 3-2:	COPROCESSOR 0 REGISTERS
-----------------------------------	-------------------	--------------------------------

Note 1: Registers used in exception processing.

2: Registers used during debug.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

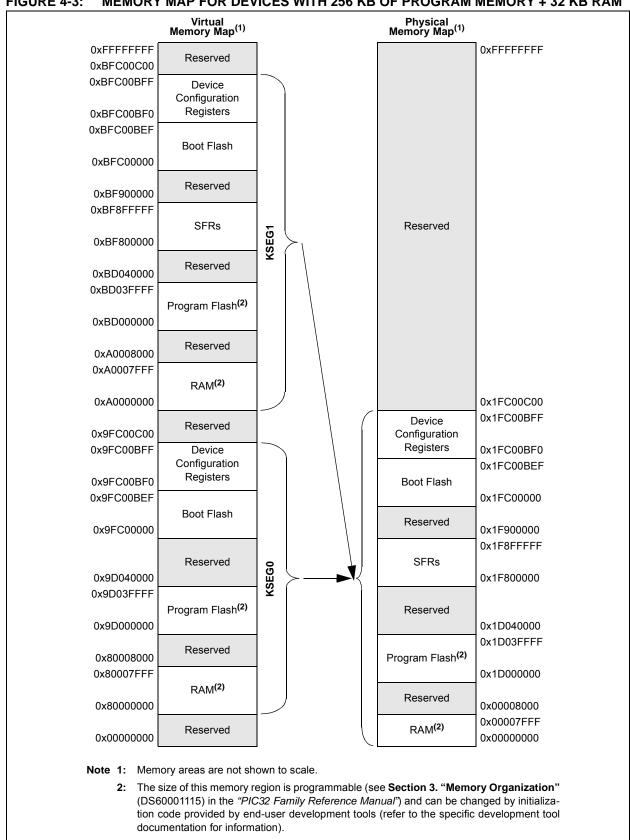
TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 **Power Management**

The MIPS[®] M4K[®] processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".


3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-1XX/2XX/5XX 64/100-pin family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS[®] M4K[®] processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K[®] core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

FIGURE 4-3: MEMORY MAP FOR DEVICES WITH 256 KB OF PROGRAM MEMORY + 32 KB RAM

4.3 Control Registers

Register 4-1 through Register 4-8 are used for setting the RAM and Flash memory partitions for data and code.

	ER 4-1: I		•••		RATION RE					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	-	—	—	—	_	—	_		
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	BMX ERRIXIBMX ERRICDBMX ERRDMABMX ERRDSBMX ERRIS									
15:8	U-0 U-0 U-0 U-0 U-0 U-0 U-0									
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1		
7:0	_	BMX WSDRM	_	_	_	· · · · · · · · · · · · · · · · · · ·	3MXARB<2:0			
Legend: R = Reac -n = Value			W = Writable '1' = Bit is se		U = Unimplei '0' = Bit is cle	mented bit, re eared	ad as '0'			
bit 31-21	Unimpleme	nted: Read a	s '0'							
bit 20	BMXERRIX	I: Enable Bus	Error from IX	l bit						
	1 = Enable I	ous error exce	ptions for unr	mapped addre	ess accesses i	nitiated from I	XI shared bu	s		
	0 = Disable	bus error exce	eptions for un	mapped addro	ess accesses	initiated from	IXI shared bu	IS		
bit 19	BMXERRIC	D: Enable Bu	s Error from I	CD Debug Un	it bit					
	1 = Enable I	ous error exce	ptions for unr	mapped addre	ess accesses i	nitiated from I	CD			
	0 = Disable	bus error exce	eptions for un	mapped addro	ess accesses	initiated from	ICD			
bit 18	BMXERRD	MA: Bus Error	from DMA bi	t						
	1 = Enable I	ous error exce	ptions for unr	mapped addre	ess accesses i	nitiated from I	DMA			
	0 = Disable	bus error exce	eptions for un	mapped addr	ess accesses	initiated from	DMA			
bit 17					disabled in De					
					ess accesses i		CPU data acc	ess		
					ess accesses					
bit 16					bit (disabled i					
					ess accesses i			on access		
					ess accesses					
bit 15-7		nted: Read a								
bit 6	-			Access from	Data RAM Wa	ait State bit				
	-				ate for address					
					ates for addre					
DIT 5-3	-	Unimplemented: Read as '0' BMXARB<2:0>: Bus Matrix Arbitration Mode bits								
		Dins Mat	iv Arbitration	Modo hite						
					ill produce un	defined behav	vior)			
					ill produce und	defined behav	ior)			
bit 2-0					ill produce und	defined behav	ior)			
bit 5-3 bit 2-0	111 = Rese	rved (using th	ese configura	tion modes w						
	111 = Rese 011 = Rese	rved (using th rved (using th	ese configura	tion modes w	ill produce und ill produce und					
	111 = Rese	rved (using th rved (using th ation Mode 2	ese configura ese configura	tion modes w						
	111 = Rese 011 = Rese 010 = Arbitr 001 = Arbitr	rved (using th rved (using th	ese configura ese configura	tion modes w						

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	_	_	—	_	_			
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	_	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDUPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				BMXDU	PBA<7:0>						

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legena.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

5.1 Interrupts Control Registers

TABLE 5-2: INTERRUPT REGISTER MAP

sse				Bits															
Virtual Address (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_		_	—	_		—	_	—	—	—	-	-	-	-	-	0000
		15:0			_	MVEC	—		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽⁴⁾	31:16 15:0					_							_	 VEC<	5:0>	_		0000
		31:16													VLOV	0.0-			0000
1020	IPTMR	15:0				IPTMR<31:0>						0000							
1030	IFS0	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	150	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IFS1	31:16	U3RXIF	U3EIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	CNGIF	CNFIF	CNEIF	0000
1010		15:0	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP2IF	CMP1IF	0000
1050	IFS2	31:16	—	—	—		—	—	—	—	_	(1)	(1)	—	SPI4TXIF ⁽¹⁾	SPI4RXIF ⁽¹⁾	-	SPI3TXIF	
		15:0	SPI3RXIF	SPI3EIF	CANIF	CMP3IF	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	U5TXIF ⁽¹⁾	U5RXIF ⁽¹⁾	U5EIF ⁽¹⁾	U4TXIF	U4RXIF	U4EIF	U3TXIF	0000
1060	IEC0	31:16	FCEIE IC3EIE	RTCCIE T3IE	FSCMIE INT2IE	AD1IE	OC5IE	IC5IE IC2EIE	IC5EIE T2IE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE T1IE	T4IE INT0IE	INT3IE	OC3IE	IC3IE CTIE	0000
		15:0 31:16	U3RXIE	U3EIE	INTZIE I2C2MIE	OC2IE I2C2SIE	IC2IE I2C2BIE	U2TXIE	U2RXIE	INT1IE U2EIE	OC1IE SPI2TXIE	IC1IE SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CS1IE CNGIE	CS0IE CNFIE	CITE	0000
1070	IEC1	15:0	CNDIE	CNCIE	CNBIE	CNAIE	I2C2BIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPIZEIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP2IE	CMP1IE	0000
		31:16	_			_		-		_		_					_		0000
1080	IEC2	15:0	_	_	_	_	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	U5TXIE ⁽¹⁾	U5RXIE ⁽¹⁾	U5EIE ⁽¹⁾	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000
		31:16	_	_	_	IN	T0IP<2:0>		INTOIS		_	_	_		CS1IP<2:0>	,	CS1IS	6<1:0>	0000
1090	IPC0	15:0	_	_	_	CS	S0IP<2:0>		CSOIS	<1:0>		_	_		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16	_	—	—	IN	T1IP<2:0>		INT1IS	6<1:0>	_	_	_		OC1IP<2:0>	>	OC1IS	6<1:0>	0000
IUAU	IPCT	15:0	_	_	—	IC	1IP<2:0>		IC1IS<1:0>		_	_	_		T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16			—	IN	T2IP<2:0>		INT2IS<1:0>			-	—		OC2IP<2:0>	>	OC2IS	6<1:0>	0000
IUBU	1602	15:0	_	_	—	IC	2IP<2:0>		IC2IS<1:0>		_	—	—		T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16	_	—	—		T3IP<2:0>		INT3IS		_	—	_		OC3IP<2:0>	>		6<1:0>	0000
1000	" 00	15:0	_		—		3IP<2:0>		IC3IS	-	_	—	—		T3IP<2:0>		T3IS	-	0000
10D0	IPC4	31:16	—	—	—		T4IP<2:0>		INT4IS	-	_	—	_		OC4IP<2:0>	>	OC4IS		0000
Longer		15:0	-	—	—		4IP<2:0>		IC4IS			—	_		T4IP<2:0>		T4IS	<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 5-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

5						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 5-1 for the exact bit definitions.

REGISTER 5-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 5-1 for the exact bit definitions.

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31:24	—	—	—		R	KBUFELM<4:()>	
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—	—	TXBUFELM<4:0>				
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8		—	—	FRMERR	SPIBUSY		_	SPITUR
7:0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

U-0

U-0

R/W-0

SMPI<3:0>

U-0

R/W-0

CSCNA

R/W-0

Bit

25/17/9/1

U-0

U-0

U-0

R/W-0

BUFM

Bit

24/16/8/0

U-0

U-0

U-0

R/W-0

ALTS

REGISTE	ER 22-2. A	DICONZ. AI					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	
31.24							

U-0

R/W-0

R/W-0

DECISTED 22 2. AD1CON2: ADC CONTROL REGISTER 2

U-0

R/W-0

U-0

_

VCFG<2:0>

Legend:

23:16

15:8

7:0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

U-0

R/W-0

OFFCAL

R/W-0

bit 31-16 Unimplemented: Read as '0'

U-0

R/W-0

R-0

BUFS

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	VREFH	VREFL
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

- 1 = Enable Offset Calibration mode
 - Positive and negative inputs of the sample and hold amplifier are connected to VREFL
- 0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs

bit 9-8 Unimplemented: Read as '0'

- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16^{th} sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15^{th} sample/convert sequence

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0
31:24	—	—	—	—	ABAT	F	REQOP<2:0>	•
00.40	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0
23:16	OPMOD<2:0>			CANCAP	—	—	—	-
15.0	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDLE	—	CANBUSY	—	—	_
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_		I	DNCNT<4:0>		

REGISTER 23-1: C1CON: CAN MODULE CONTROL REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 **ABAT:** Abort All Pending Transmissions bit
 - 1 = Signal all transmit buffers to abort transmission
 - 0 = Module will clear this bit when all transmissions aborted

bit 26-24 REQOP<2:0>: Request Operation Mode bits

- 111 = Set Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Set Configuration mode
- 011 = Set Listen Only mode
- 010 = Set Loopback mode
- 001 = Set Disable mode
- 000 = Set Normal Operation mode

bit 23-21 OPMOD<2:0>: Operation Mode Status bits

- 111 = Module is in Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Module is in Configuration mode
- 011 = Module is in Listen Only mode
- 010 = Module is in Loopback mode
- 001 = Module is in Disable mode
- 000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

- 1 = CANTMR value is stored on valid message reception and is stored with the message
- 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
- bit 19-16 Unimplemented: Read as '0'
- bit 15 ON: CAN On bit⁽¹⁾
 - 1 = CAN module is enabled
 - 0 = CAN module is disabled
- bit 14 Unimplemented: Read as '0'
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FLTEN11	MSEL1	1<1:0>	FSEL11<4:0>				
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN10	MSEL10<1:0>		FSEL10<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN9	MSEL9<1:0>			F	SEL9<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN8	MSEL	8<1:0>	FSEL8<4:0>				

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
h:+ 00 04	
bit 28-24	
	11111 = Reserved
	•
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

25.1 Control Registers

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess		Ð								Bits									ŝ
Virtual Addre (BF80_#)	gister ame ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	CVRCON	31:16	—	_	_	—	_	—	—	-		—	-	—	_	_	_	_	0000
9000	UVRCON	15:0	ON	_	_	—			—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	—	—	—	-	—	_	FWDTWI	NSZ<1:0>	
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN WINDIS		—	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM<1:0>		FPBDIV<1:0>		—	OSCIOFNC	POSCMOD<1:0>		
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	—	FSOSCEN			F	•		

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Reserved: Write '1'

bit 25-24 **FWDTWINSZ:** Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

~	
	10100 = 1:1048576
	10011 = 1:524288
	10010 = 1:262144
	10001 = 1:131072
	10000 = 1:65536
	01111 = 1:32768
	01110 = 1:16384
	01101 = 1:8192
	01100 = 1:4096
	01011 = 1:2048
	01010 = 1:1024
	01001 = 1:512
	01000 = 1:256
	00111 = 1:128
	00110 = 1:64
	00101 = 1:32
	00100 = 1:16
	00011 = 1 :8
	00010 = 1 :4
	00001 = 1:2
	00000 = 1:1
	All other combinations not shown result in operation = 10100
	· ·

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = External Clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

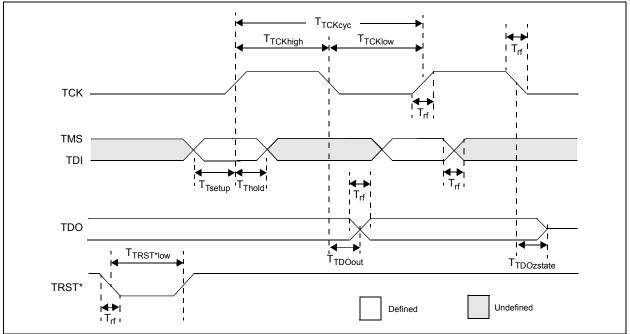
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0		
31:24	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_		—	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	_	_	—	_		
15:8	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
10.0	USERID<15:8>									
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
7.0	USERID<7:0>									

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

Legend:	r = Reserved bit	P = Programmable bi	it
R = Readable bit	W = Writable bit	U = Unimplemented b	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG


TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol Characteristics			Min.	Max.	Units	Conditions		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—		
		Hold Time	400 kHz mode	600	—	ns			
			1 MHz mode (Note 1)	250		ns			
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—		
			400 kHz mode	0	1000	ns			
			1 MHz mode (Note 1)	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus		
			400 kHz mode	1.3	_	μs	must be free before a new		
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start		
IS50	Св	Bus Capacitive Lo		400	pF	—			

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS

TABLE 31-42: EJTAG TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industri} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-tem} \end{array}$					
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions				
EJ1	Ттсксус	TCK Cycle Time	25		ns					
EJ2	Ттскнідн	TCK High Time	10		ns	_				
EJ3	TTCKLOW	TCK Low Time	10		ns	_				
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_				
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_				
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_				
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_				
EJ8	TTRSTLOW	TRST Low Time	25		ns					
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_				

Note 1: These parameters are characterized, but not tested in manufacturing.