

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128lt-50i-pf

Email: info@E-XFL.COM

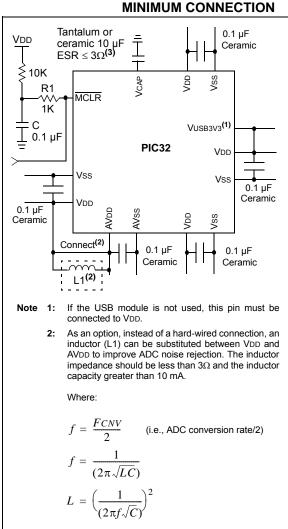
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	0-PIN TQFP (TOP VIEW)		
	PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L		
			100 1
Pin #	Full Pin Name	Pin #	Full Pin Name
71	RPD11/PMA14/RD11	86	Vdd
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13	88	AN45/RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	Vss	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	91	RA6
77	AN25/RPD2/RD2	92	CTED8/RA7
	AN26/C3IND/RPD3/RD3	93	AN46/PMD0/RE0
	AN40/RPD12/PMD12/RD12	94	AN47/PMD1/RE1
	AN41/PMD13/RD13	95	RG14
-	RPD4/PMWR/RD4	96	RG12
02	RPD5/PMRD/RD5	97	RG13
	AN42/C3INC/PMD14/RD6	98	AN20/PMD2/RE2
	AN43/C3INB/PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3
85	VCAP	100	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.


2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

Table of Contents

1.0	Device Overview	13
2.0	Guidelines for Getting Started with 32-bit MCUs	
3.0	CPU	
4.0	Memory Organization	
5.0	Interrupt Controller	
6.0	Flash Program Memory	
7.0	Resets	
8.0	Oscillator Configuration	
9.0	Direct Memory Access (DMA) Controller	
10.0	USB On-The-Go (OTG)	
11.0	I/O Ports	129
	Timer1	
13.0	Timer2/3, Timer4/5	163
14.0	Watchdog Timer (WDT)	169
15.0	Input Capture	173
16.0	Output Compare	177
17.0	Serial Peripheral Interface (SPI)	
18.0	Inter-Integrated Circuit (I ² C)	
19.0	Universal Asynchronous Receiver Transmitter (UART)	199
20.0	Parallel Master Port (PMP)	207
	Real-Time Clock and Calendar (RTCC)	
22.0	10-bit Analog-to-Digital Converter (ADC)	231
23.0	Controller Area Network (CAN)	243
24.0	Comparator	
25.0	Comparator Voltage Reference (CVREF)	
26.0	Charge Time Measurement Unit (CTMU)	279
27.0	Power-Saving Features	285
28.0	Special Features	291
29.0	Instruction Set	303
30.0	Development Support	305
31.0	40 MHz Electrical Characteristics	309
	50 MHz Electrical Characteristics	
33.0	DC and AC Device Characteristics Graphs	359
	Packaging Information	
The M	Vicrochip Web Site	377
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	378

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

RECOMMENDED

FIGURE 2-1:

2: Aluminum or electrolytic capacitors should not be used. ESR \leq 3 Ω from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

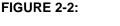
The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

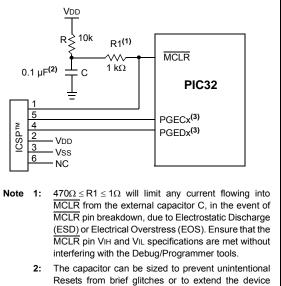
2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "40 MHz Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides two specific device functions:

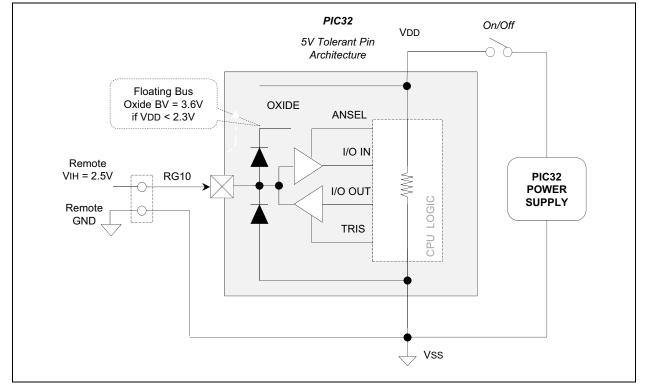
- Device Reset
- Device programming and debugging


Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS



Resets from brief glitches or to extend the device Reset period during POR. 3: No pull-ups or bypass capacitors are allowed on

 No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.9.2 5V TOLERANT INPUT PINS

The internal high side diode on 5V tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-7. Voltages on these pins, if VDD < 2.3V, should not exceed roughly 3.2V relative to Vss of the PIC32 device. Voltage of 3.6V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability. If a remotely powered "digital-only" signal can be guaranteed to always be \leq 3.2V relative to Vss on the PIC32 device side, a 5V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than Vss - 0.3V.

3.2 Architecture Overview

The MIPS32[®] M4K[®] processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- · Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32[®] M4K[®] processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation.

The execution unit includes:

- · 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32[®] M4K[®] processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:MIPS32[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/
DIVIDE UNIT LATENCIES AND REPEAT RATES

Op code	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 5-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 5-1 for the exact bit definitions.

REGISTER 5-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 5-1 for the exact bit definitions.

7.1 Control Registers

TABLE 7-1: RESET SFR SUMMARY

Virtual Address (BF80_#) Register Name ⁽¹) Bit Range									Bi	ts									
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Ran	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F600	RCON	31:16		—	HVDR	—	—	—	—	—	—	—	—	—	—	—	—		0000
F000	RCON	15:0		_	—	_	_	—	CMR	VREGS	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR	POR	_{xxxx} (1)
F610	DOWDOT	31:16	_	_	—	—	_	_	_	—	_	_	_	—	_	_	-	—	0000
F610	RSWRST	15:0	_	—	_	—	—	_	—	_	_	_	—	—	—	_	_	SWRST	0000

Legend: — = unimplemented, read as '0'. Address offset values are shown in hexadecimal.

Note 1: The Reset value is dependent on the DEVCFGx Configuration bits and the type of reset.

NOTES:

TABLE 11-1: INPUT PIN SELECTION

[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT3R	INT3R<3:0>	0000 = RPD2 0001 = RPG8
T2CKR	T2CKR<3:0>	0010 = RPF4
IC3R	IC3R<3:0>	
U1RXR	U1RXR<3:0>	0101 = RPB9 0110 = RPB10
U2RXR	U2RXR<3:0>	0111 = RPC14
U5CTSR	U5CTSR<3:0>	1000 = RPB5 ⁽⁷⁾ 1001 = Reserved
SDI3R	SDI3R<3:0>	1010 = RPC1 ⁽³⁾ 1011 = RPD14 ⁽³⁾
SDI4R	SDI4R<3:0>	1100 = RPG1 ⁽³⁾ 1101 = RPA14 ⁽³⁾
REFCLKIR	REFCLKIR<3:0>	1110 = Reserved 1111 = RPF2 ⁽¹⁾
INT4R	INT4R<3:0>	0000 = RPD3
T5CKR	T5CKR<3:0>	0001 = RPG7 0010 = RPF5
		0011 = RPD11 0100 = RPF0
		0101 = RPB1 0110 = RPE5
		0111 = RPC13 1000 = RPB3
		1001 = RPF12 ⁽³⁾ 1010 = RPC4 ⁽³⁾
		1011 = RPD15 ⁽³⁾ 1100 = RPG0 ⁽³⁾
		1101 = RPA15 ⁽³⁾ 1110 = RPF2 ⁽¹⁾
C1RXR ⁽⁵⁾	C1RXR<3:0> ⁽⁵⁾	1110 = R(F2(2) 1111 = RPF7 ⁽²⁾
INT2R	INT2R<3:0>	0000 = RPD9 0001 = RPG6
T4CKR	T4CKR<3:0>	0010 = RPB8
IC2R	IC2R<3:0>	
IC5R	IC5R<3:0>	0101 = RPB0 0110 = RPE3
U1CTSR	U1CTSR<3:0>	0111 = RPB7 1000 = Reserved
U2CTSR	U2CTSR<3:0>	1001 = RPF12 ⁽³⁾
SS1R	SS1R<3:0>	1010 = RPD12 ⁽³⁾ 1011 = RPF8 ⁽³⁾
SS3R	SS1R<3:0>	1100 = RPC3 ⁽³⁾ 1101 = RPE9 ⁽³⁾
SS3R	SS3R<3:0>	1110 = RPD14 ⁽³⁾ 1111 = RPB2
	INT3R T2CKR IC3R U1RXR U2RXR U5CTSR SDI3R SDI4R REFCLKIR INT4R U3RXR U4CTSR SDI1R SDI2R U4CTSR SDI2R U1RXR ⁽⁵⁾ INT2R INT2R U1CTSR U2RXR U2RXR SS1R SS3R	INT3R INT3R IZCKR T2CKR IC3R IC3R IC3R IC3R U1RXR U1RXR U2RXR U2RXR U5CTSR U5CTSR SDI3R SDI3R SDI3R SDI3R SDI4R SDI4R SDI4R SDI4R SDI4R SDI4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R INT4R IAT4 INT4R IAT4 IV3RXR U3RXR U3RXR U3RXR U4CTSR U4CTSR U4CTSR SDI1R U4CTSR SDI2R SDI2R SDI2R SDI2R SDI2R SDI2R SDI2R INT2R INT2R INT2R IC2R IC2R IC2R IC2R IC2R IC5R IC5R IV1CTSR

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16	_	—	—	_	—	-			_	—	_		—		—	—	0000
0200	/	15:0	—	—	—	—	—	—	—	_	—	_	—	_	ANSELC3	ANSELC2	ANSELC1	—	000E
6210	TRISC	31:16		—	—	—	_	_	_		_		—	_	_	_	—	_	0000
02.0		15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	_	—	_	—	_	—	—	—	—	F000
6220	PORTC	31:16	—	—	—	—	_	_	_	_	—	_	—	_	—	_	—		0000
0220	1 on 10	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	_	—	_	xxxx
6230	LATC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	0000
0200	Ento	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	—	—	_	—	_	xxxx
6240	ODCC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	0000
02.10	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	—	—	_	—	_	0000
6250	CNPUC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	—	—	—	—	_	—	_	0000
6260	CNPDC	31:16		—	—	—	—	_	_	_	—	—	—		—	_	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	—	—	—	—	_	—	_	0000
6270	CNCONC	31:16				_			_		—	_	—		—		—		0000
0270	oncono	15:0	ON		SIDL				_		—	_	—		—		—		0000
6280	CNENC	31:16		—					_		—	_	—		—		—		0000
0200		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	_	_		—		—	_	—		—	_	0000
6200	CNSTATC	31:16	_	—	—	_	_				-	—	-		—		—	—	0000
0290	GNOTAIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_				-	_			_		—	_	0000

Legend:

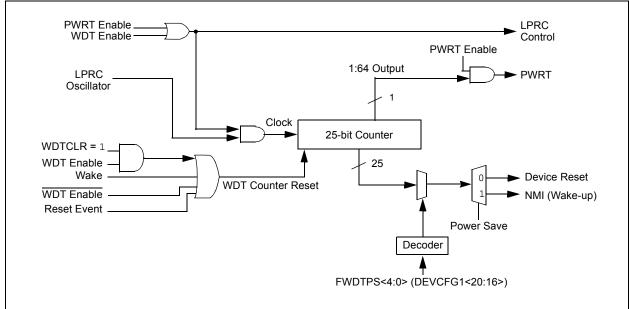
x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 11-8: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16	_	_	—	_		—	—		_	—	_	_	—	_	—	—	0000
0000	THOLLD	15:0	—	—	—	—			—	_	_	—	_		ANSELD3	ANSELD2	ANSELD1	—	000E
6310	TRISD	31:16	—	—	—	—	—		—	—	_		—	_		—			0000
0310	TRIOD	15:0	—	—	—	_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
5320	PORTD	31:16	—	_	_	_	_	_	—	_	_	_	_		_	—		_	0000
3320	TORID	15:0	—	—	—	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	6330 LATD	31:16	—	—	—	_	—	—	_	_	_	—	_	-	—	—	_	_	0000
0330	LAID	15:0	-	_	_	_	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	-	_	_	_		_	_			_			_	_	_	_	0000
0340	ODCD	15:0	Ι			-	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
6350	CNPUD	31:16	-	_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0330	CINFUD	15:0	-	_	_	_	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
6360	CNPDD	31:16	-	_	_	_		_	_			_			_	_	_	_	0000
0300	CNFDD	15:0	-	_	-		CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
6270	CNCOND	31:16	-	_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0370	CINCOIND	15:0	ON	_	SIDL		—	—	_	—	—	—	—	—	—	_	_	—	0000
6380	CNEND	31:16	-	_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0300	CNEND	15:0	Ι	-	-	Ι	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
		31:16	—	—	—	_	_	_	_	—	_	_	_	_	_	_		_	0000
6390	CNSTATD	15:0	_	_	_	-	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.


14.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

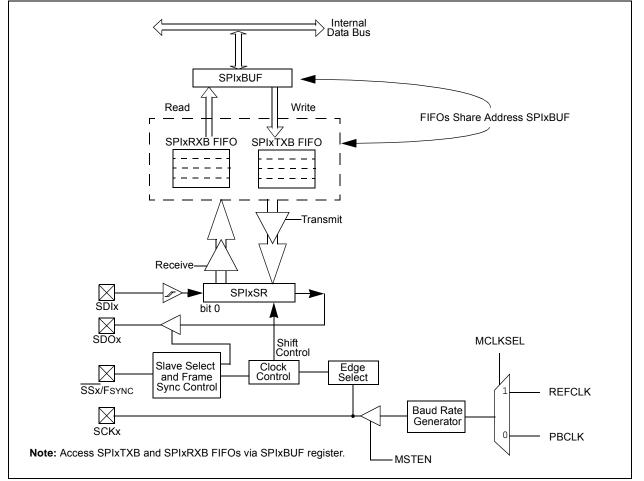
The Watchdog Timer (WDT), when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 14-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

17.0 SERIAL PERIPHERAL INTERFACE (SPI)


This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- Master and Slave modes support
- Four different clock formats
- · Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/0/40 lower block
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 17-1: SPI MODULE BLOCK DIAGRAM

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP (CONTINUED)

ess		6								Bit	ts								
Virtual Address (BF80_#) Register Name ⁽¹⁾	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	-	—	—	_	_	_	—	_	—	_	—	_	_	—	—	—	0000
5C40	SPI3CON2	15:0	SPI SGNEXT	-	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	-		AUD MONO	_	AUDMC)D<1:0>	0000
	SPI4CON ⁽²⁾	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL		—	—	—		SPIFE	ENHBUF	0000
5E00	SPI4CON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
10	SPI4STAT ⁽²⁾	31:16			_		RXE	UFELM<4:)>		_	-	—		TXE	BUFELM<4	:0>		0000
5E10	5P1451A1	15:0	_	_	_	FRMERR	SPIBUSY	—	_	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	19EB
5E20	SPI4BUF ⁽²⁾	31:16 15:0		DAIA<31:0>							0000								
	SPI4BRG ⁽²⁾	31:16	_		_	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
5E30	SPI4BRG	15:0	_	_	_	_	_	_	_					BRG<8:0>					0000
		31:16			_	_	_	_	—		_	—	—	—	—	_	—	_	0000
5E40	SPI4CON2 ⁽²⁾	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 17 **SPIFE:** Frame Sync Pulse Edge Select bit (Framed SPI mode only)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 **ENHBUF:** Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- bit 15 **ON:** SPI Peripheral On bit⁽¹⁾
 - 1 = SPI Peripheral is enabled
 - 0 = SPI Peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters in Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 **DISSDO:** Disable SDOx pin bit
 - 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
 - 0 = SDOx pin is controlled by the module
- bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits

When AUDEN = 1:

- MODE32 MODE16 Communication
 - 11 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 10 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 01 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
 - 00 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN = 0:

MODE32 MODE16 Communication

- 1x **32-bit**
- 01 **16-bit**
- 00 **8-bit**
- bit 9 SMP: SPI Data Input Sample Phase bit

Master mode (MSTEN = 1):

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time
- Slave mode (MSTEN = 0):
- SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
- bit 8 CKE: SPI Clock Edge Select bit⁽³⁾
 - 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
 - SSEN: Slave Select Enable (Slave mode) bit
 - 1 = SSx pin used for Slave mode
 - $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
- bit 6 **CKP:** Clock Polarity Select bit⁽⁴⁾

bit 7

- 1 = Idle state for clock is a high level; active state is a low level
- 0 = Idle state for clock is a low level; active state is a high level
- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	-	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	-	—		_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/clear	red
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision

- Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
- bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31.24	SID<10:3>									
02:16	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x		
23:16		SID<2:0>		_	EXID	_	EID<17:16>			
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	EID<15:8>									
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0				EID<	:7:0>					

REGISTER 23-14: C1RXFn: CAN ACCEPTANCE FILTER 'n' REGISTER ('n' = 0 THROUGH 15)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

DC CHA		ISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
		oporation	9 top		$-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param.	Symbol	Characteristic	Min. Typ. Max		Max.	Units	Conditions			
	Mai	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins		_	0.4	V	IOL \leq 9 mA, VDD = 3.3V			
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	_	_	0.4	v	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	v	Ioh ≥ -10 mA, Vdd = 3.3V			
0020	VOH	Output High Voltage I/O Pins: 8x Source Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	2.4	_	_	v	Ioh ≥ -15 mA, Vdd = 3.3V			
		Output High Voltage	1.5 ⁽¹⁾		_		IOH \ge -14 mA, VDD = 3.3V			
		I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	2.0 ⁽¹⁾	—	_	V	IOH \ge -12 mA, VDD = 3.3V			
Doont	N / = 4		3.0 ⁽¹⁾	_	_		IOH \ge -7 mA, VDD = 3.3V			
DO20A	VOH1	Output High Voltage I/O Pins: 8x Source Driver Pins - RB14,	1.5 ⁽¹⁾	_	—		IOH \ge -22 mA, VDD = 3.3V			
			2.0 ⁽¹⁾	_	_	V	IOH \ge -18 mA, VDD = 3.3V			
		RC15, RD2, RD10, RD15, RF6, RF13, RG6	3.0 ⁽¹⁾	_	_		Ioh \geq -10 mA, Vdd = 3.3V			

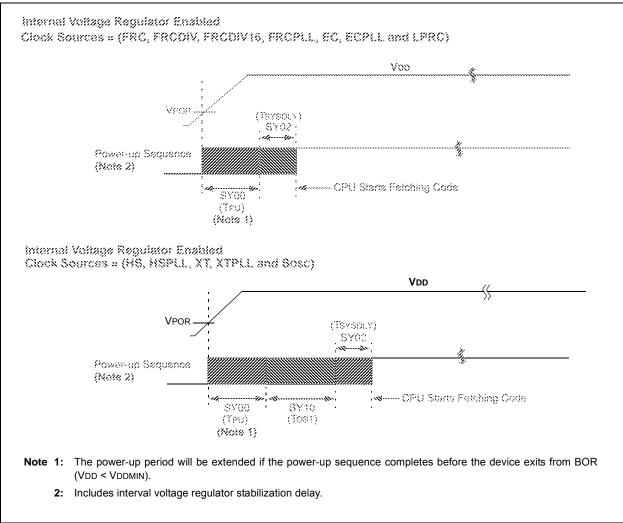
TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHA	RACTERI	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industria} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		40 40	MHz MHz	EC (Note 4) ECPLL (Note 3)		
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)		
OS12			4	—	10	MHz	XTPLL (Notes 3,4)		
OS13			10	—	25	MHz	HS (Note 5)		
OS14			10	—	25	MHz	HSPLL (Notes 3,4)		
OS15			32	32.768	100	kHz	Sosc (Note 4)		
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	_	_	—	See parameter OS10 for Fosc value		
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC (Note 4)		
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)		
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)		
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	_	ms	(Note 4)		
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)		12		mA/V	VDD = 3.3V, TA = +25°C (Note 4)		

TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.


2: Instruction cycle period (TcY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

4: This parameter is characterized, but not tested in manufacturing.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS

