

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128lt-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	—	_	_	—	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	_		_	_	—	—	_			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8				BMXDK	PBA<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	BMXDKPBA<7:0>										

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CHSSA<31:24>											
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHSSA<23:16>											
45-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				CHSSA<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	CHSSA<7:0>											

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				CHDSA<	31:24>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHDSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				CHDSA	<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	CHDSA<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\text{Note:}}$ This must be the physical address of the destination.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	_	_	-	_	_	_	-	-	_	-	_	_	_	-	_	00
FB88	RPC2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC2	2<3:0>		00
		31:16	_	_	_	_	—	_	_	_	_	_	—	_	—	—	_	_	00
FB8C	RPC3R	15:0	_	—	—	_	—	—	_	—	—	_	—	_		RPC	3<3:0>		00
5000	00040	31:16	_	—	—	_	—	—	—	—	—	_	—	_	—	—	—	_	00
FB90	RPC4R	15:0	_	_	_	_	—	_	_	_	_	_	—	_		RPC4	<3:0>		00
5004	000400	31:16	_	—	—	_	—	—	—	—	—	_	—	_	—	—	—	_	00
FBB4	RPC13R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPC1	3<3:0>		00
		31:16	_	_	_	_	_	_	_	_	_	_	_		—	_	_		00
FBB8	RPC14R	15:0	_	_	_	_	—	—	_	—	—	_	—	_		RPC1	4<3:0>		00
50.00	00000	31:16	_	—	—	_	—	—	—	—	—	_	—	_	—	—	—	_	00
FBC0	RPD0R	15:0	_	_	_	_	_	_	_	_	_	_	_			RPD)<3:0>		00
		31:16	_	_	_	_	—	—	_	—	—	_	—	_	—	—	_	_	00
FBC4	RPD1R	15:0	_	—	—	_	—	—	—	—	—	_	—	_		RPD'	<3:0>		00
		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	_		00
FBC8	RPD2R	15:0	_	—	—	_	—	—	—	—	—	_	—	_		RPD2	2<3:0>		00
5000	00000	31:16	_	—	—	_	_	_	_	_	_	_	_	_	_	_	—		00
FBCC	RPD3R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPD	3<3:0>		00
5000	00040	31:16	_	—	—	_	—	—	—	—	—	_	—	_	—	—	—	_	00
FBD0	RPD4R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPD4	<3:0>		00
	00050	31:16	_	—	—	_	_	_	_	_	_	_	_	_	_	_	—		00
FBD4	RPD5R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPD	5<3:0>		00
		31:16	—	—	—	—	_	_	_	_	_	_	_	_	_	—	—		00
FBE0	RPD8R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPD8	3<3:0>		00
5054	00000	31:16	_	—	—	_	—	—	_	—	—	_	—	_	—	—	—	_	00
FBE4	RPD9R	15:0	_	—	—	_	—	—	_	—	—	_	—	_		RPD9	9<3:0>		00
		31:16	_	—	—	_	_	_	_	_	_	_	_	_	_	_	—		00
FBE8	RPD10R	15:0	_	—	—	—	_	_	_	_	_	_	_	_		RPD1	0<3:0>		00
	000440	31:16	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	—	00
FBEC	RPD11R	15:0	—	_	—	_	—	—	_	—	_	_	_	_		RPD1	1<3:0>		00
FDFC		31:16	_	—	—	—	_	_	_	_	_	_	_	_	—	—	—	—	00
FBF0	FBF0 RPD12R 15:0 RPD		RPD1	2<3:0>		00													
EDEC		31:16	_	—	—	—	_	_	_	_	_	_	_	_	—	—	—	—	00
FBF8	RPD14R	15:0	_	_	_	_	_	_	_		_	_	_	_		RPD1	4<3:0>		00

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

	LE 19-1:	UAI		ROUGE	UARTS					(ש.									
ess		đ								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6440		31:16	_	—	—		—		—	—		—	_		_	_	_		0000
0440	USBRG. /	15:0						Baud Rate Generator Prescaler					0000						
6600	U4MODE ⁽¹⁾	31:16	_	_	_		_		_	_		—	_		_	_	_		0000
0000	04IVIODL.	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	U4STA ⁽¹⁾	31:16	_	—	—	-	—	_	—	ADM_EN				ADDF	R<7:0>		-		0000
0010	04017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620	U4TXREG	31:16	—		—	_	_	_		—	_	—	—	_	—	—	—	—	0000
0020	OFINICO	15:0	—		—	_	_	_		TX8	TX8 Transmit Register				0000				
6630	U4RXREG	31:16	—		—	_	_	_		_		—	_	_	_	_	_	—	0000
0000	OHIVILO	15:0	—		—	_	_	_		RX8				Receive	Register				0000
6640	U4BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	U IBIKO	15:0							Bau	d Rate Gen	erator Pres	caler							0000
6800	U5MODE ^(1,2)	31:16		—	—		—	_	—			—	—		—	—	—		0000
	00111022	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA ^(1,2)	31:16	—	—	—	—	—	—	—	ADM_EN				1	R<7:0>	1	1	1	0000
		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	_		—	_	—				_	—	—	—		—			0000
		15:0	_		—	_	—			TX8				Transmit	Register				0000
6830	U5RXREG ^(1,2)	31:16	_		—	—	—			—	—	—	—	—	—	—	—	—	0000
		1010	—		—	—	—			RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
		15:0					'o' Booot			d Rate Gene	erator Pres	caler							0000

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

20.1 Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		ē								Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	—	_	_	_	-	—	-		RDSTART	—	-	—	_	_	DUALBUF	_	0000
1000		15:0	ON	—	SIDL	ADRML	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF∢	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	—	—	—	_	—	—	—	_	—	—	—	—	-	_	0000
		15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITN	1<3:0>		WAITE		0000
		31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
7020	PMADDR	15:0	CS2 ADDR15	CS1 ADDR14							ADDR	<13:0>							0000
		31:16	ADDR15	ADDR 14	_		_		_	_	_		_			_	_	_	0000
7030	PMDOUT	15:0				DATAOUT<15:0>							0000						
		31:16											_				_	_	0000
7040	PMDIN	15:0								DATAIN	l<15:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	0000
7050	PMAEN	15:0								PTEN	<15:0>								0000
7060	PMSTAT	31:16	—	—	_	—	_	_	_	—	—	_	_	—	—	—	—	_	0000
7000	FINISTAT	15:0	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		_	OB3E	OB2E	OB1E	OB0E	BFBF
		31:16	—	_		—		—	1	-	-	—	1	—	_	-	-		0000
7070	PMWADDR	15:0	WCS2	WCS1	_	—	_	_	_	—	—		_	—	—	_	-	_	0000
		15.0	WADDR15	WADDR14	ADDR14 WADDR<13:0>							0000							
		31:16	—	—	_	—		_	_	_	_		_	—	—	_	—		0000
7080	PMRADDR	15:0	RCS2	RCS1	_	—	_		—	—	—	_	—	—	—	_	—	_	0000
			RADDR15	RADDR14							RADDF	R<13:0>							0000
7090	PMRDIN	31:16	31:16	—	—	—	_	_	—	—	—	—	—	—	—	_	—	_	0000
1030		15:0	15:0							R	DATAIN<15:	0>							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	_	—	—	—	—
23:16	U-0	U-0						
23.10	—	—	—	_	—	—	—	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	_	—	F	ORM<2:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
7.0		SSRC<2:0>		CLRASAM	_	ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

bit 14

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
 - Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'
- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)

 - 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)
 - 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing SAMP bit ends sampling and starts conversion
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER (CONTINUED)

```
bit 21-16 CH0SA<5:0>: Positive Input Select bits for Sample A Multiplexer Setting
            For 64-pin devices:
            011110 = Channel 0 positive input is Open<sup>(1)</sup>
            011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            011100 = Channel 0 positive input is IVREF<sup>(3)</sup>
            011011 = Channel 0 positive input is AN27
            000001 = Channel 0 positive input is AN1
            000000 = Channel 0 positive input is AN0
            For 100-pin devices:
            110010 = Channel 0 positive input is Open<sup>(1)</sup>
            110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            110000 = Channel 0 positive input is IVREF<sup>(3)</sup>
            101111 = Channel 0 positive input is AN47
            0000001 = Channel 0 positive input is AN1
            0000000 = Channel 0 positive input is AN0
bit 15-0
            Unimplemented: Read as '0'
```

- Note 1: This selection is only used with CTMU capacitive and time measurement.
 - 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
 - 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	_	_	—	—	—	-	_	
00.40	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
23:16	—	WAKFIL	_	_		SEG	,4)		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	SEG1PH<2:0>			PRSEG<2:0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SJW<1:0> ⁽³⁾			BRP<5:0>					

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

511 21 15	
bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	SJW ≤ SEG2PH.

- 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
- This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (C1CON < 23:21 >) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	_
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	_	_	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	—	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					MODIF	CTMRIF	RBIF	TBIF

REGISTER 23-3: C1INT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by cl

learing or setting the ON bit N (C1CON<15>).

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 20-16 FSEL10<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN9: Filter 9 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

REGISTER 23-17: C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	_	—	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—	—	_	—	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	—	—	—	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

DIL 31-21	Unimplemented. Read as 0
bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
hit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
DIC 13	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty
hit 15 11	
bit 10	Unimplemented: Read as '0'
DICTO	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0: (FIFO configured as a receive buffer)
	Unused, reads '0'
Note 1:	This bit is read-only and reflects the status of the FIFO.

NOTES:

27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- · Configuration bit select lock

27.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

27.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5			Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0		
	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	—	—	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_	_	_	-	_	-	_		
15:8	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
10.0	USERID<15:8>									
7:0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P		
7:0				USERID<	7:0>					

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

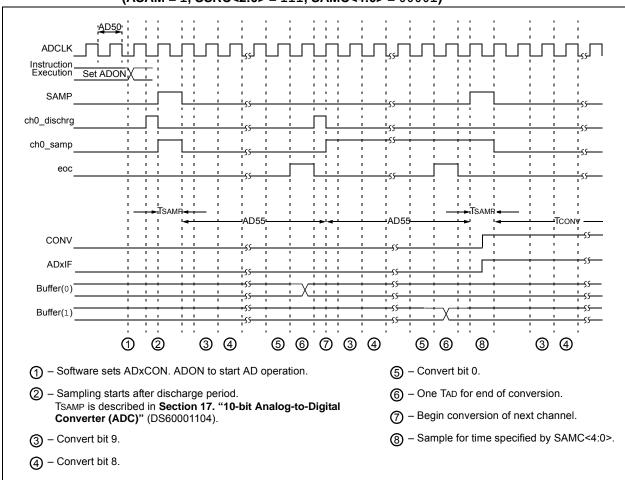
Legend:	r = Reserved bit	P = Programmable bi	it
R = Readable bit	W = Writable bit	U = Unimplemented b	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit

- 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function
- bit 30 **FUSBIDIO:** USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function
- bit 29 **IOL1WAY:** Peripheral Pin Select Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
 - 1 = Allow only one reconfiguration
 - 0 = Allow multiple reconfigurations
- bit 27-16 Unimplemented: Read as '0'
- bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions	
BO10	Vbor	BOR Event on VDD transition high-to-low ⁽²⁾	2.0	_	2.3	V	—	

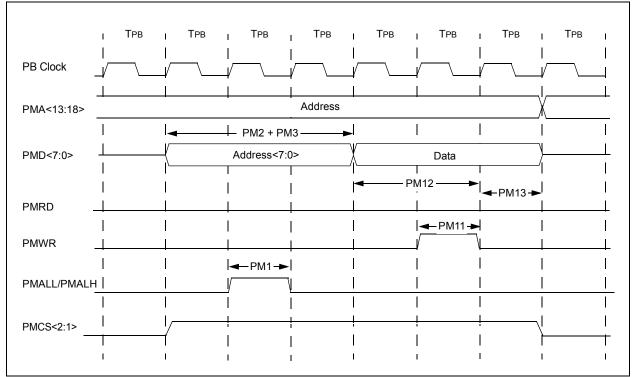

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

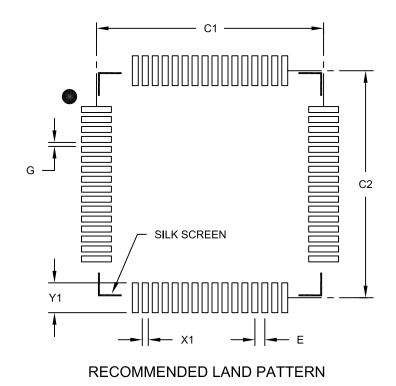
DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No. ⁽¹⁾	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
HV10	Vhvd	High Voltage Detect on VCAP pin	—	2.5		V	_	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.


FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	TLAT	PMALL/PMALH Pulse Width	_	1 Трв		_	_	
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	_	_	_	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	—		
PM4	Tahold	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_	
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	_	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	_	ns	_	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	_	ns	_	

TABLE 31-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

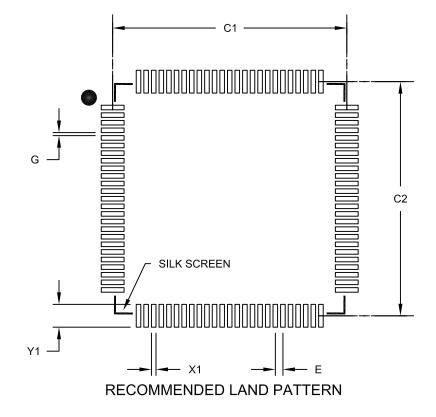

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX			
Contact Pitch	E		0.50 BSC				
Contact Pad Spacing	C1		11.40				
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X64)	X1			0.30			
Contact Pad Length (X64)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B