

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
MIPS32® M4K™
32-Bit Single-Core
40MHz
CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
81
128KB (128K x 8)
FLASH
-
16К х 8
2.3V ~ 3.6V
A/D 48x10b
Internal
-40°C ~ 105°C (TA)
Surface Mount
100-TQFP
100-TQFP (12x12)
https://www.e-xfl.com/product-detail/microchip-technology/pic32mx530f128lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To acc	ess the docume	ents listed	below,
	browse	e to the docume	ntation se	ction of
	the	Microchip	web	site
	(www.r	nicrochip.com).		

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- · Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001123)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

TABLE 4-1: SFR MEMORY MAP

Derinheral	Virtual A	Address			
Peripheral	Base	Offset Start			
Interrupt Controller		0x1000			
Bus Matrix		0x2000			
DMA	0.0000	0x3000			
USB	UXBE88	0x5000			
PORTA-PORTG		0x6000			
CAN1		0xB000			
Watchdog Timer		0x0000			
RTCC		0x0200			
Timer1-Timer5		0x0600			
IC1-IC5		0x2000			
OC1-OC5		0x3000			
I2C1-I2C2		0x5000			
SPI1-SPI4		0x5800			
UART1-UART5		0x6000			
PMP	UXDFOU	0x7000			
ADC1		0x9000			
DAC		0x9800			
Comparator 1, 2, 3		0xA000			
Oscillator		0xF000			
Device and Revision ID		0xF200			
Flash Controller		0xF400			
PPS		0xFA00			
Configuration	0xBFC0	0x0BF0			

4.2 Special Function Register Maps

TABLE 4-2: BUS MATRIX REGISTER MAP

ess)		Ð										Bits							
Virtual Addr (BF88_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	_		BMXCHEDMA	_	_	_	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BINIXCON	15:0		Ι		Ι	-	_	-		_	BMXWSDRM	_	_	-	BI	MXARB<2:0>		0047
2010		31:16	_	_	_	_		_	-		—	_	—	—	_		—	—	0000
2010	DIVIADA	15:0									BM	XDKPBA<15:0>							0000
2020		31:16											—	0000					
2020	DIVINDODDA	15:0 BMXDUDBA<15:0>									-	0000							
2030		31:16	—	—	—	—	—	_	—	—	—	_	—	—	_	_	—	—	0000
2000		15:0									BM	XDUPBA<15:0>							0000
2040	BMXDRMS7	31:16									BM	(DRMS7<31.0>							xxxx
2040	BINADI (IIIOZ	15:0						<u> </u>			Diviz								xxxx
2050	BMXPLIPBA(1)	31:16	—	—	—	—	—	—	—	—	—	—	—	—		BMXPUPBA	<19:16>		0000
2000		15:0									BM	XPUPBA<15:0>							0000
2060	BMXPEMS7	31:16	BMXPFMS7<31:0>																
2000	DWATTWOZ	15:0																	
2070	BMXBOOTS7	31:16									BMX	BOOTS7<31.03	>						0000
20/0	ENIXEOUTOL	15:0																	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The PIC32MX1XX/2XX/5XX 64/100-pin oscillator system has the following modules and features:

- A Total of four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	CHSSA<31:24>														
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:10	CHSSA<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	CHSSA<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0		CHSSA<7:0>													

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
01.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	CHDSA<31:24>														
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23.10	CHDSA<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	CHDSA<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				CHDSA	<7:0>										

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Bit Range 31/23/15/7		Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—		—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—		—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—		—	—	—	—	—
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
		ENDP.	T<3:0>		DIR	PPBI	_	_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED)

bit 1 **PPBRST:** Ping-Pong Buffers Reset bit

- 1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
- 0 = Even/Odd buffer pointers not being Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry enabled
 - 0 = USB module and supporting circuitry disabled

SOFEN: SOF Enable bit(5)

- 1 = SOF token sent every 1 ms
- 0 = SOF token disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		â								Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200		31:16	_		—		_	—	-	-	-	—	—	-	—	—	—	_	0000
0200	ANOLLO	15:0					_					—			ANSELC3	ANSELC2	ANSELC1		000E
6210	TRISC	31:16	_			_	_	—	_	_	_	—	—	_	_	—	_		0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	—	—	_	—	—	—	_	F000
6220	DODTO	31:16	—	—	—	—	—	_				_	_		_	_	-		0000
0220	FURIC	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
6220	LATC	31:16	—	—	—	—	_	_	—	—	—	—	-	—	—	_	—	—	0000
0230		15:0	LATC15	LATC14	LATC13	LATC12	_	_	—	—	—	—	-	—	—	_	—	—	xxxx
6240	0000	31:16	—	—	—	—	_	_	—	—	—	—	-	—	—	_	—	—	0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	_				_	_		_	_	-		0000
6250		31:16	—	—	_	_	—	_				_	—		-	—	-		0000
0250	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	—	—	—	—	-	—	—	_	—	—	0000
6260		31:16	—	—	—	—	_	_	—	—	—	—	-	—	—	_	—	—	0000
0200	CINFDC	15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	—	—	—	—	-	—	—	_	—	—	0000
6270	CNICONIC	31:16	—	—	—	_	_	_	—	—	—	—	-	—	—	_	—	—	0000
0270	CINCOINC	15:0	ON	—	SIDL	_	_	_	—	—	—	—	-	—	—	_	—	—	0000
6290		31:16	—	—		_	_	_	_	_	_	_	_	_	—	_	_	_	0000
0200	CINEINC	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_	—	—	—	—	-	—	—	_	—	—	0000
6290	CNETATO	31:16		—		—	—		—	—	—			—	—	—	—	—	0000
	CNSTATE	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_		—	_	_	_		_	—	_	_	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 11-8: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300		31:16	_	-	—	—	—	—	—	-	-	—	—	—	—	—	—	—	0000
0000	ANOLLD	15:0	—		—	—	—		—	_			_	_	ANSELD3	ANSELD2	ANSELD1		000E
6310	TRISD	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	—	—	_	0000
0010	TRIOD	15:0	_	_	—	_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
5320	PORTD	31:16	_	_	_	_		_		—	_	_	—	—	_	_	_		0000
		15:0	—				RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
6330	LATD	31:16	—	_	—	—		—	—	—	—	—	—	—	—	—	—		0000
		15:0	_	—	—	—	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
6340	ODCD	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
		15:0	_	—	—	_	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
6350	CNPUD	31:16	-	—	_	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	_	_	—	—	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
6360	CNPDD	31:16	_				-	-	-	-	-	-	-	-	_	-	-		0000
		15:0	_				CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
6370	CNCOND	31:16	-		-														0000
		15:0	ON		SIDL														0000
6380	CNEND	31:16	_								-				-				0000
		15:0	_	—	—	—	CNIED11	CNIED10	CNIED9	CNIED8	CNIED/	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
6300	CNISTATO	31:16	_	—	—	—	-	-	-	-	-	-	-	-	-	-	-	-	0000
0390	CINGTAID	15:0	—	-	—	—	STATD11	STATD10	STATD9	STATD8	STATD7	STATD6	STATD5	STATD4	STATD3	STATD2	STATD1	STATD0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

21.0 **REAL-TIME CLOCK AND** CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available the Microchip web from site (www.microchip.com/PIC32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time.

The following are the key features of this module:

- · Time: hours. minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- · Provides calendar: Weekday, date, month and year
- · Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- · User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- · Requirements: External 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

RTCC BLOCK DIAGRAM

REGISTE bit 7-0	ER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED) ARPT<7:0>: Alarm Repeat Counter Value bits ⁽³⁾ 11111111 = Alarm will trigger 256 times
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0 .
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
3:	This assumes a CPU read will execute in less than 32 PBCLKs.
Note:	This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CH0NB	—		CH0SB<5:0>								
00.40	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	CH0NA	—	CH0SA<5:0>									
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	—	—	—	—	_				
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		_										

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

bit 23

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 CHONB: Negative Input Select bit for Sample B 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL bit 30 Unimplemented: Read as '0'

bit 29-24 CH0SB<5:0>: Positive Input Select bits for Sample B

For 64-pin devices:

011110 = Channel 0 positive input is Open⁽¹⁾ 011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽²⁾ 011100 = Channel 0 positive input is IVREF⁽³⁾ 011011 = Channel 0 positive input is AN27 000001 = Channel 0 positive input is AN1 000000 = Channel 0 positive input is AN0

For 100-pin devices:

110010 = Channel 0 positive input is $Open(1)$
110010 = Channel o positive input is Open ,
110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾
110000 = Channel 0 positive input is IVREF ⁽³⁾
101111 = Channel 0 positive input is AN47
•
•
•
0000001 = Channel 0 positive input is AN1
0000000 = Channel 0 positive input is AN0
CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
1 = Channel 0 negative input is AN1

- 0 = Channel 0 negative input is VREFL
- bit 22 Unimplemented: Read as '0'

Note 1: This selection is only used with CTMU capacitive and time measurement.

- 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
- 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167) in the "PIC32 Family Reference Manual", which is available the site from Microchip web (www.microchip.com).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 26-1.

© 2014-2016 Microchip Technology Inc.

29.0 INSTRUCTION SET

The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

	ARACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)						
20 01.			Operating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Param. No. Symbol Characteristics		Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V			
		I/O Pins	Vss	—	0.2 Vdd	V			
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)		
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)		
	VIH	Input High Voltage							
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)		
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)		
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 VDD	—	5.5	V			
DI28		SDAx, SCLx	0.65 VDD	—	5.5	V	SMBus disabled (Note 4,6)		
DI29		SDAx, SCLx	2.1	_	5.5	V	$\begin{array}{l} \text{SMBus enabled,} \\ \text{2.3V} \leq \text{VPIN} \leq 5.5 \\ \textbf{(Note 4,6)} \end{array}$		
DI30	ICNPU	Change Notification Pull-up Current	—	-200	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)		
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	50	200	—	μA	VDD = 3.3V, VPIN = VDD		
	lı∟	Input Leakage Current (Note 3)							
DI50		I/O Ports	_	—	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance		
DI51		Analog Input Pins	_	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V \text{SS} \leq V \text{PIN} \leq V \text{DD}, \\ &\text{Pin at high-impedance} \end{split}$		
DI55		MCLR(2)	_	_	<u>+</u> 1	μA	$Vss \leq V PIN \leq V DD$		
DI56		OSC1	_	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V \\ &V \\ &X \\ &T \\ ∧ \\ &H \\ &M \\ &M \\ &M \\ &M \\ &M \\ &M \\ &M$		

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units		Conditions				
		Program Flash Memory ⁽³⁾							
D130	Eр	Cell Endurance	20,000	—	—	E/W	—		
D131	Vpr	VDD for Read	2.3	—	3.6	V	—		
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—		
D134	TRETD	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	_	10		mA	_		
	Tww	Word Write Cycle Time	—	411	—	FRC Cycles	See Note 4		
D136	Trw	Row Write Cycle Time	—	6675	—	FRC Cycles	See Note 2,4		
D137	TPE	Page Erase Cycle Time	—	20011	—	FRC Cycles	See Note 4		
	TCE	Chip Erase Cycle Time	—	80180	—	FRC Cycles	See Note 4		

TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (See Table 31-19) and FRC tuning values (See Register 8-2).

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Тур.	Comments			
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.		_	10	μs	See Note 1	
D313	DACREFH	CVREF Input Voltage Reference Range	AVss	_	AVDD	V	CVRSRC with CVRSS = 0	
			VREF-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0	—	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size	
D315	DACRES	Resolution	—	—	DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
			—	—	DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	—	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			_	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

TABLE 31-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 31-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (\leq 3 ohm). Typical voltage on the VCAP pin is 1.8V.

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2			ns	_		
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	_		ns	_		
SP20	TSCF	SCKx Output Fall Time (Note 4)	—	—		ns	See parameter DO32		
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—		ns	See parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_			ns	See parameter DO31		
SP35	TscH2DoV,	SDOx Data Output Valid after		—	15	ns	VDD > 2.7V		
	ISCL2DOV	SCKx Edge	—	—	20	ns	VDD < 2.7V		
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_		ns	_		
SP41	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			5.50
Optional Center Pad Length	T2			5.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A