

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256h-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 100-PIN USB DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW)								
	PIC32MX230F128L PIC32MX530F128L PIC32MX250F256L PIC32MX550F256L PIC32MX270F512L PIC32MX570F512L			100					
			-	1					
Pin #	Full Pin Name		Pin #	Full Pin Name					
71	RPD11/PMA14/RD11		86	VDD					
72	RPD0/INT0/RD0]	87	AN44/C3INA/RPF0/PMD11/RF0					
73	SOSCI/RPC13/RC13]	88	AN45/RPF1/PMD10/RF1					
74	SOSCO/RPC14/T1CK/RC14]	89	RPG1/PMD9/RG1					
75	Vss	T	90	RPG0/PMD8/RG0					
76	AN24/RPD1/RD1	1	91	RA6					
77	AN25/RPD2/RD2]	92	CTED8/RA7					
78	AN26/C3IND/RPD3/RD3	1	93	AN46/PMD0/RE0					
79	AN40/RPD12/PMD12/RD12	1	94	AN47/PMD1/RE1					
80	AN41/PMD13/RD13	1	95	RG14					
81		1	06	B010					
	RPD4/PMWR/RD4	1	96	RG12					
82	RPD4/PMWR/RD4 RPD5/PMRD/RD5		96 97	RG12 RG13					
82 83	RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6		96 97 98	RG12 RG13 AN20/PMD2/RE2					
82 83 84	RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6 AN43/C3INB/PMD15/RD7		96 97 98 99	RG12 RG13 AN20/PMD2/RE2 RPE3/CTPLS/PMD3/RE3					

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	-	—	—	—	—	—			
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—		—	—			
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	—	—	—	MVEC	—	TPC<2:0>					
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	_	—		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP			

REGISTER 5-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 MVEC: Multi Vector Configuration bit

- 1 = Interrupt controller configured for multi vectored mode
- 0 = Interrupt controller configured for single vectored mode
- bit 11 Unimplemented: Read as '0'

bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits

- 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
- 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
- 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
- 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
- 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
- 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
- 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
- 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	—	—	_		—	—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:10	—	—	—	—	—	—	—	—					
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
15:8	—	—	—	—	—	5	SRIPL<2:0> ⁽¹⁾						
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_	—		VEC<5:0> ⁽¹⁾									

REGISTER 5-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Logonal				
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-11 Unimplemented: Read as '0'
- bit 10-8 **SRIPL<2:0>:** Requested Priority Level bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 **Unimplemented:** Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	IPTMR<31:24>											
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	IPTMR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	IPTMR<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				IPTM	IR<7:0>							

REGISTER 5-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 11-9: PORTE REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		0	Bits																
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400		31:16		_	—	—	—	—	_	—	-	-	-		—	—	—	—	0000
0400	ANOLLE	15:0	—		—	_	—	_	ANSELE9	ANSELE8	ANSELE7	ANSELE6	ANSELE5	ANSELE4	—	ANSELE2	ANSELE1	ANSELE0	03F7
6410	TRISE	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	_	0000
0110	ITRIOE	15:0	—	_	—	—	—	_	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
6420	PORTE	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.20		15:0	—	-	—	—	—	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6440	LATE	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.10	2,112	15:0	—	-	—	—	—	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6440	ODCE	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.10	0202	15:0	—	-	—	—	—	_	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
6450	CNPUE	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.00	0.11 02	15:0	—	-	—	—	—	_	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	0000
6460	CNPDF	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.00	0.11.02	15:0	—	-	—	—	—	_	CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
6470	CNCONE	31:16	—	-	—	—	—	_	—	-	—	—	—	_	—	—	—	_	0000
0.1.0	0.100.12	15:0	ON	-	SIDL	—	—	_	—	-	—	—	—	_	—	—	—	_	0000
6480	CNENE	31:16	—	-	—	—	—	_	—	-	—	—	—	-	—	—	—	-	0000
0.00	S.LENE	15:0	_	_	—	—	—	_	CNIEE9	CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
6490	CNSTATE	15:0	_	_	_	_	—	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER (CONTINUED)('x' = 2 THROUGH 5)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽²⁾ 1 = Odd numbered and even numbered timers form a 32-bit timer 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

NOTES:

REGISTER 15-1: ICXCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)('x' = 1 THROUGH 5)

- bit 2-0 ICM<2:0>: Input Capture Mode Select bits
 - 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
 - 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
 - 101 = Prescaled Capture Event mode every sixteenth rising edge
 - 100 = Prescaled Capture Event mode every fourth rising edge
 - 011 = Simple Capture Event mode every rising edge
 - 010 = Simple Capture Event mode every falling edge
 - 001 = Edge Detect mode every edge (rising and falling)
 - 000 = Input Capture module is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- Master and Slave modes support
- Four different clock formats
- · Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 SUFO buffers act as 4/8/40 local data FIFO
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 17-1: SPI MODULE BLOCK DIAGRAM

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 17 **SPIFE:** Frame Sync Pulse Edge Select bit (Framed SPI mode only)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 **ENHBUF:** Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- bit 15 **ON:** SPI Peripheral On bit⁽¹⁾
 - 1 = SPI Peripheral is enabled
 - 0 = SPI Peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters in Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 **DISSDO:** Disable SDOx pin bit
 - 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
 - 0 = SDOx pin is controlled by the module
- bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits

When AUDEN = 1:

- MODE32 MODE16 Communication
 - 11 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 10 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
 - 01 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
 - 00 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN = 0:

MODE32 MODE16 Communication

- 1x **32-bit**
- 01 **16-bit**
- 00 **8-bit**
- bit 9 SMP: SPI Data Input Sample Phase bit

Master mode (MSTEN = 1):

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time
- Slave mode (MSTEN = 0):
- SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
- bit 8 CKE: SPI Clock Edge Select bit⁽³⁾
 - 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
 - SSEN: Slave Select Enable (Slave mode) bit
 - 1 = SSx pin used for Slave mode
 - $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
- bit 6 **CKP:** Clock Polarity Select bit⁽⁴⁾

bit 7

- 1 = Idle state for clock is a high level; active state is a low level
- 0 = Idle state for clock is a low level; active state is a high level
- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	<pre>PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity</pre>
bit 0	STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
	—	—	—	—	—	—	CAL<9	CAL<9:8>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	CAL<7:0>											
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
10.0	ON ^(1,2)	—	SIDL	—	—	—	—	-				
7:0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0				
	RTSECSEL ⁽³⁾	RTCCLKON	_	—	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE				

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is reset only on a Power-on Reset (POR).

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	_	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	_	—	
15.9	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
10.0	—	—	—	FILHIT<4:0>					
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0	
	_			ICODE<6:0> ⁽¹⁾					

REGISTER 23-4: C1VEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

```
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Reserved
         10000 = Reserved
         01111 = Filter 15
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
         ICODE<6:0>: Interrupt Flag Code bits<sup>(1)</sup>
bit 6-0
         1111111 = Reserved
         1001001 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
         1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0111111 = Reserved
         0010000 = Reserved
         0001111 = FIFO15 Interrupt (C1FSTAT<15> set)
         0000000 = FIFO0 Interrupt (C1FSTAT<0> set)
```


25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	—	—	—	—	—	—	FWDTWI	NSZ<1:0>	
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:10	FWDTEN	WINDIS	—			WDTPS<4:0>			
15:8	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
	FCKSM<1:0>		FPBDIV<1:0>		—	OSCIOFNC POS		OD<1:0>	
7:0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
	IESO	_	FSOSCEN	_	_	F	NOSC<2:0>		

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Reserved: Write '1'

bit 25-24 **FWDTWINSZ:** Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

•
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
All other combinations not snown result in operation = 10100

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
Deen				ig tempe	erature	-40°C ≤ -40°C ≤	$40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	Iol \leq 9 mA, VDD = 3.3V	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	_	_	0.4	V	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	V	Ioh ≥ -10 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	2.4	_	_	V	ІОН ≥ -15 mA, VDD = 3.3V	
	Vон1	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	1.5 ⁽¹⁾	_		V	IOH \geq -14 mA, VDD = 3.3V	
			2.0 ⁽¹⁾	_	—		IOH \ge -12 mA, VDD = 3.3V	
D0004			3.0 ⁽¹⁾	_	_		Ioh \geq -7 mA, Vdd = 3.3V	
DUZUA		1 Output High Voltage I/O Pins: 8x Source Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	1.5 ⁽¹⁾	—	_	V	$\text{IOH} \geq \text{-22 mA}, \text{VDD} = 3.3 \text{V}$	
			2.0 ⁽¹⁾	_	_		$\text{IOH} \geq \text{-18 mA, VDD} = 3.3\text{V}$	
			3.0 ⁽¹⁾	—	_		IOH \ge -10 mA, VDD = 3.3V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No. Symbol Characteristics			Min.	Min. Typical ⁽¹⁾ Max. Units Conditions			
DO50	Cosco	OSC2 pin	_	_	15	pF	In XT and HS modes when an external crystal is used to drive OSC1
DO50a	Csosc	SOSCI/SOSCO pins	_	33		pF	Epson P/N: MC-306 32.7680K- A0:ROHS
DO56	Сю	All I/O pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMIL

© 2014-2016 Microchip Technology Inc