

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1 Interrupts Control Registers

TABLE 5-2: INTERRUPT REGISTER MAP

sse											Bits								
Virtual Address (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_		_	—	_		—	_	—	—	—	-	-	-	-	-	0000
		15:0			_	MVEC	—		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽⁴⁾	31:16 15:0					_							_	 VEC<	5:0>	_		0000
		31:16													VLOV	0.0-			0000
1020	IPTMR	15:0		IPTMR<31:0> 0000															
1030	IFS0	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	150	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IFS1	31:16	U3RXIF	U3EIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	CNGIF	CNFIF	CNEIF	0000
1010		15:0	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP2IF	CMP1IF	0000
1050	IFS2	31:16	—	—	—		—	—	—	—	_	(1)	(1)	—	SPI4TXIF ⁽¹⁾	SPI4RXIF ⁽¹⁾	-	SPI3TXIF	
		15:0	SPI3RXIF	SPI3EIF	CANIF	CMP3IF	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	U5TXIF ⁽¹⁾	U5RXIF ⁽¹⁾	U5EIF ⁽¹⁾	U4TXIF	U4RXIF	U4EIF	U3TXIF	0000
1060	IEC0	31:16	FCEIE IC3EIE	RTCCIE T3IE	FSCMIE INT2IE	AD1IE	OC5IE	IC5IE IC2EIE	IC5EIE T2IE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE T1IE	T4IE INT0IE	INT3IE	OC3IE	IC3IE CTIE	0000
		15:0 31:16	U3RXIE	U3EIE	INTZIE I2C2MIE	OC2IE I2C2SIE	IC2IE I2C2BIE	U2TXIE	U2RXIE	INT1IE U2EIE	OC1IE SPI2TXIE	IC1IE SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CS1IE CNGIE	CS0IE CNFIE	CITE	0000
1070	IEC1	15:0	CNDIE	CNCIE	CNBIE	CNAIE	I2C2BIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPIZEIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP2IE	CMP1IE	0000
		31:16	_			_		-				_					_		0000
1080	IEC2	15:0	_	_	_	_	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	U5TXIE ⁽¹⁾	U5RXIE ⁽¹⁾	U5EIE ⁽¹⁾	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000
		31:16	_	_	_	IN	T0IP<2:0>		INTOIS		_	_	_		CS1IP<2:0>	,	CS1IS	6<1:0>	0000
1090	IPC0	15:0	_	_	_	CS	S0IP<2:0>		CSOIS	<1:0>		_	_		CTIP<2:0>		CTIS	<1:0>	0000
10A0	IPC1	31:16	_	—	—	IN	T1IP<2:0>		INT1IS	6<1:0>	_	_	_		OC1IP<2:0>	>	OC1IS	6<1:0>	0000
IUAU	IPCT	15:0	_	_	—	IC	1IP<2:0>		IC1IS	<1:0>	_	_	_		T1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16			—	IN	T2IP<2:0>		INT2IS	6<1:0>		-	—		OC2IP<2:0>	>	OC2IS	6<1:0>	0000
IUBU	1602	15:0	_	_	—	IC	2IP<2:0>		IC2IS	<1:0>	_	—	—		T2IP<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16	_	—	—		T3IP<2:0>		INT3IS		_	—	_		OC3IP<2:0>	>		6<1:0>	0000
1000	" 00	15:0	_		—		3IP<2:0>		IC3IS	-	_	—	—		T3IP<2:0>		T3IS<1:0>		0000
10D0	IPC4	31:16	—	—	—		T4IP<2:0>		INT4IS	-	_	—	_		OC4IP<2:0>	>	OC4IS		0000
Longer		15:0	-	—	—		4IP<2:0>		IC4IS			—	_		T4IP<2:0>		T4IS	<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1		
31:24	31:24 — — PLLODIV<2:0>				>	FRCDIV<2:0>				
22.16	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y		
23:16	—	SOSCRDY PBDIVRDY PBDI			/<1:0>	Р	LLMULT<2:0>	•		
15.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
15:8	_		COSC<2:0>		_		NOSC<2:0>			
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0		
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN		

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:

bit 22

y = Value set from Configuration bits on POR

•	•	•	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

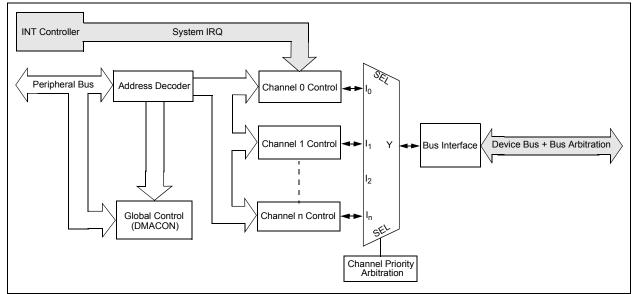
- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
 - SOSCRDY: Secondary Oscillator (SOSC) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

The following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 9-1: DMA BLOCK DIAGRAM

TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
VIITUAI AGGRESS (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH1SSIZ	31:16	—			—				—	_	—			—	—	—		000
,,,,,	Donnool2	15:0								CHSSIZ	2<15:0>	•			i	i	i	·	000
3180	DCH1DSIZ	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	_	—	000
5100	DOITIDOIZ	15:0								CHDSIZ	2<15:0>								000
3190	DCH1SPTR	31:16	—	_	—	—	_	—	—	—	—	—	—	—	—	—	—	—	000
		15:0								CHSPT	R<15:0>	-							000
31A0	DCH1DPTR	31:16	—		—	_		_	—	—	—	—	—	_	—	—	—	—	000
		15:0								CHDPT	R<15:0>								000
31B0	DCH1CSIZ	31:16	—	_	—	—	_	—	—	-	—	-	—	—				_	000
		15:0								CHCSIZ	2<15:0>	1							000
31C0	DCH1CPTR	31:16	—		_						-	—	_						000
		15:0								CHCPTI	≺<15:0>								000
31D0	DCH1DAT	31:16 15:0	_	_			_				_	—	—		 AT<7:0>	—	—	_	000
		31:16	_				_					_	_	CHPDF		_			000
31E0	DCH2CON	15:0								CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR		000
		31:16	—			_					CHLIN	CHALD	CHCHN	CHAIR		GHEDET	CHER	.1<1.0>	000
31F0	DCH2ECON	15:0				CHSIR					CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_		_	FFF
		31:16	_	_	_			_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
3200	DCH2INT	15:0	_	_		_	_	_	_	_	CHSDIE	CHSHIF	CHDDIE	CHDHIE	CHBCIE	CHCCIF	CHTAIF	CHERIF	
		31:16										0.10111	0.1551	0.15111	0112011	011001	0	0.12.1	000
3210	DCH2SSA	15:0								CHSSA	<31:0>								000
		31:16																	000
3220	DCH2DSA	15:0								CHDSA	<31:0>								000
	D.01100017	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	000
3230	DCH2SSIZ	15:0								CHSSIZ	2<15:0>								000
0040	DOUDDOIZ	31:16	_	_	—	—	—	—	—	_	—	_	—	—	—	—	_	—	000
3240	DCH2DSIZ	15:0								CHDSIZ	2<15:0>								000
2250	DCH2SPTR	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	000
3230		15:0								CHSPT	R<15:0>								000
3260	DCH2DPTR	31:16	_	_	—	—	—	—	—	—	_	—	_	—		—		—	000
3200		15:0								CHDPTI	R<15:0>								000
3270	DCH2CSIZ	31:16	_	_	—	—		—	_	—	_	—	_	_		—		—	000
5210	DONZOSIZ	15:0								CHCSIZ	2<15:0>								000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	-	-	-		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-	-	-	-		—
7:0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
7:0	UTEYE	_	_	USBSIDL	USBSIDL		_	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test enabled
 - 0 = Eye-Pattern Test disabled

bit 6-5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3 LSDEV: Low-Speed Device Enable bit

- 1 = USB module operates in Low-Speed Device mode only
- 0 = USB module operates in OTG, Host, or Full-Speed Device mode
- bit 2-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—	—	—	_	-	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	_	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾				AUDMONO ^(1,2)		AUDMOD)<1:0>(1,2)

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

ı'
ļ

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Read as '0'

- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit 1 = Frame Error overflow generates error events 0 = Frame Error does not generate error events bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit 1 = Receive overflow generates error events 0 = Receive overflow does not generate error events bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit 1 = Transmit Underrun Generates Error Events 0 = Transmit Underrun Does Not Generates Error Events bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions) 1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data 0 = A ROV is a critical error which stop SPI operation bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions) 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty 0 = A TUR is a critical error which stop SPI operation AUDEN: Enable Audio CODEC Support bit⁽¹⁾ bit 7 1 = Audio protocol enabled 0 = Audio protocol disabled bit 6-5 Unimplemented: Read as '0' AUDMONO: Transmit Audio Data Format bit^(1,2) bit 3 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo bit 2 Unimplemented: Read as '0' AUDMOD<1:0>: Audio Protocol Mode bit^(1,2) bit 1-0 11 = PCM/DSP mode 10 = Right Justified mode 01 = Left Justified mode $00 = I^2 S \mod I$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
31:24	—	—	—	RXBUFELM<4:0>						
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23:16	—	—	—		Tک	(BUFELM<4:()>			
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8		—	—	FRMERR	SPIBUSY		_	SPITUR		
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
7:0	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF		

Legend:	C = Clearable bit	HS = Set in hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

NOTES:

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		0								Bi	ts						ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15											All Resets			
9100	ADC1BUF9	31:16 15:0		ADC Result Word 9 (ADC1BUF9<31:0>)													
9110	ADC1BUFA	31:16 15:0		ADC Result Word A (ADC1BUFA<31:0>)													
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>) 0000 0000													
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)					0000
9140	ADC1BUFD	31:16 15:0		ADC Result Word D (ADC1BUFD<31:0>) 0000 0000													
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>) 0000													
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)					0000 0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

TABLE 23-1: CAN1 REGISTER SUMMARY (CONTINUED)

ess		6						,		Bits	;								
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
B340	C1FIFOBA	31:16 15:0								C1FIFOBA	<31:0>								0000
B350	C1FIFOCONn	31:16		_			_	—	_	_		—			-	SIZE<4:0>	-		0000
D330	(n = 0-15)	15:0	—	FRESET	UINC	DONLY	_	—	_	—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI	<1:0>	0000
B360	C1FIFOINTn	31:16	-	-	—	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	—	—	-	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
D300	(n = 0-15)	15:0	_	-		-	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	-	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
B370	C1FIFOUAn	31:16								C1FIFOUA	-21:05								0000
B370	(n = 0-15)	15:0								CIFIFUUA	~31.02								0000
B380	C1FIFOCIn	31:16	_	_	_	_	-	_	-	_	_	_	_		_	_	_	-	0000
6300	(n = 0-15)	15:0	—	—	_	_	_	_	_	_	_	—	—		C1	FIFOCIn<4:	0>		0000

Legend: Note 1 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more 1: information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	FLTEN3	MSEL:	3<1:0>	FSEL3<4:0>							
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	FLTEN2	MSEL	2<1:0>	FSEL2<4:0>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	FLTEN1	MSEL	1<1:0>	FSEL1<4:0>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	FLTEN0 MSEL0<1:0>			FSEL0<4:0>							

REGISTER 23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

24.1 Control Registers

TABLE 24-1: COMPARATOR REGISTER MAP

ess				Bits															
Virtual Address (BF80_#)	(BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CM1CON	31:16	_	_	—	—	—	_	—	—	-	—	—	—	_	—	—	_	0000
A000	CIVITCON	15:0	ON	COE	CPOL	—		_	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
4010	CM2CON	31:16	—	-	—	—		_	—	—	_	—	_	—	_	—	—	—	0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL	—		—	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
4020	CM3CON	31:16	—	-	—	—		—	—	—	_	—	_	—	_	—	—	—	0000
A020	CIVISCON	15:0	ON	COE	CPOL	—		—	—	COUT	EVPO	L<1:0>	_	CREF	_	—	CCH	<1:0>	E1C3
A060	CMSTAT	31:16	—	-	—	—		—	—	—	_	—	_	—	_	—	—	—	0000
A000	CIVISTAT	15:0	—	_	SIDL	_	_			_	—		—	—	—	C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

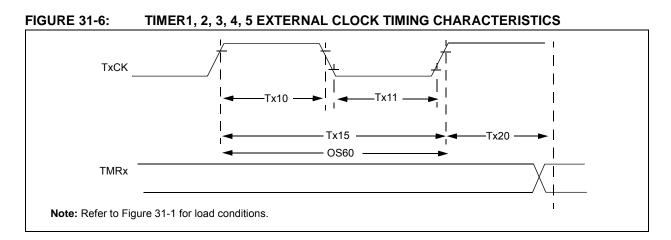
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

NOTES:

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

NOTES:

DC CHARACT	ERISTICS		(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$							
Parameter No.	Typical ⁽²⁾	Max.	Units	Units Conditions							
Idle Current (II	DLE): Core Of	f, Clock on E	Base Current	(Notes 1, 4)							
DC30a	1.5	5	mA	4 MHz (Note 3)							
DC31a	3	8	mA		10 MHz						
DC32a	5	12	mA		20 MHz (Note 3)						
DC33a	6.5	15	mA		30 MHz (Note 3)						
DC34a	8	20	mA	40 MHz							
DC37a	75	100	μA	-40°C		LPRC (31 kHz)					
DC37b	180	250	μA	+25°C 3.3V (No							
DC37c	280	380	μA	+85°C							


TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

TABLE 31-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS ⁽¹⁾		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Typical	Max.	Units	Conditions			
TA10	High Time with prescale			[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15				
			Asynchronous, with prescaler		10	—	_	ns	—			
TA11	T⊤xL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	_	ns	Must also meet parameter TA15			
	Asynchronous, with prescaler			10	_	_	ns	—				
TA15	ΤτχΡ	TxCK Input Period	Synchronou with presca		[(Greater of 25 ns or 2 Трв)/N] + 30 ns	—	—	ns	VDD > 2.7V			
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	-	—	ns	VDD < 2.7V			
			Asynchrono with presca		20	—	—	ns	VDD > 2.7V (Note 3)			
					50	-	_	ns	VDD < 2.7V (Note 3)			
OS60	FT1	Input Freque (oscillator en	OSC1/T1CK Oscillator nput Frequency Range oscillator enabled by setting he TCS (T1CON<1>) bit)		32	—	100	kHz	—			
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		K			1	Трв	—			

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 31-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHA		ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PM11	Twr	PMWR Pulse Width	—	1 Трв	_	_	_			
PM12	Tdvsu	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	_	_			
PM13	Tdvhold	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	_		—			

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-40: OTG ELECTRICAL SPECIFICATIONS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
USB313	VUSB3V3	USB Voltage	3.0		3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation			
USB315	VILUSB	Input Low Voltage for USB Buffer	—	—	0.8	V	—			
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—			
USB318	VDIFS	Differential Input Sensitivity	_	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met			
USB319	VCM	Differential Common Mode Range	0.8		2.5	V	—			
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—			
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.425 kΩ load connected to VUSB3V3			
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 kΩ load connected to ground			

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--

32.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters.

TABLE 32-5 :	EXTERNAL CLOCK TIMING REQUIREMENTS
---------------------	------------------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
MOS10		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		50 50	MHz MHz	EC (Note 2) ECPLL (Note 1)

Note 1: PLL input requirements: $4 \text{ MHz} \le \text{FPLLIN} \le 5 \text{ MHz}$ (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

2: This parameter is characterized, but not tested in manufacturing.

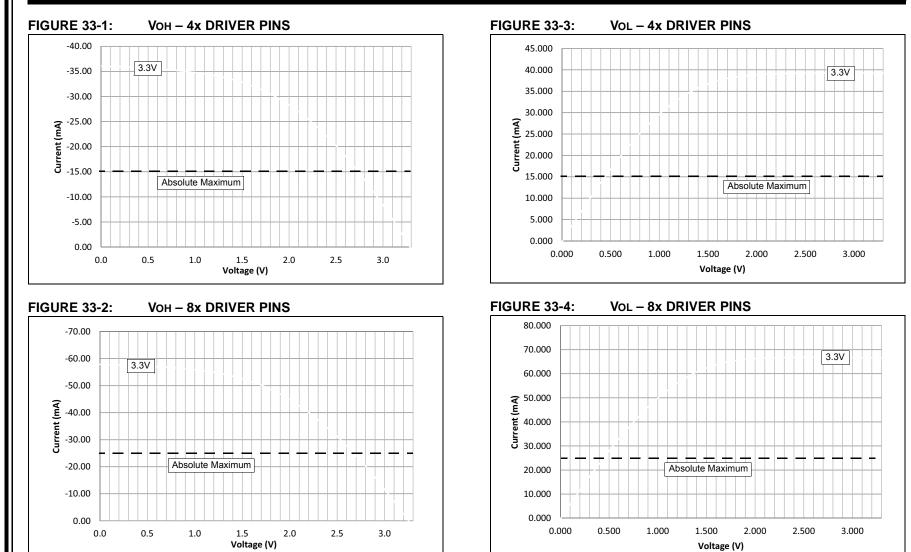
TABLE 32-6: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Typical Max. Units Cond			Conditions
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2			ns	_
MSP11	TscH	SCKx Output High Time (Note 1,2)	Тѕск/2	_		ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

TABLE 32-7.	SPIX MODULE MASTER MODE ((CKF = 1)	TIMING REQUIREMENTS
TADLL JZ-7.	SFIX WODDLE WASTER WODE	ONL = I	


AC CHARACTERISTICS			(unless o	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2		I	ns	_	
MSP11	TscH	SCKx Output High Time (Note 1,2)	Тѕск/2	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMIL

© 2014-2016 Microchip Technology Inc