

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64

1

64

1

TABLE 3: **PIN NAMES FOR 64-PIN USB DEVICES**

64-PIN QFN⁽⁴⁾ AND TQFP (TOP VIEW)

PIC32MX230F128H PIC32MX530F128H PIC32MX250F256H PIC32MX550F256H PIC32MX270F512H PIC32MX570F512H

		QFN ⁽⁴) TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	USBID/RPF3/RF3
2	AN23/PMD6/RE6	34	VBUS
3	AN27/PMD7/RE7	35	VUSB3V3
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	D-
5	AN17/C1INC/RPG7/PMA4/RG7	37	D+
6	AN18/C2IND/RPG8/PMA3/RG8	38	Vdd
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/VBUSON/RB5	43	RPD9/SDA1/RD9
12	AN4/C1INB/RB4	44	RPD10/SCL1/PMA15/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMA14/RD11
14	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	46	RPD0/INT0/RD0
15	PGEC1/VREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3/RB7	50	AN25/RPD2/SCK1/RD2
19	AVDD	51	AN26/C3IND/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10/RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	C3INC/RD6
23	TMS/CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	55	C3INB/RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	Vdd
26	VDD	58	C3INA/RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/SCK3/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 11.0 "I/O Ports" for more information. 2: 3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

NOTES:

FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY + 64 KB RAM

© 2014-2016 Microchip Technology Inc.

documentation for information).

TABLE 5-2: INTERRUPT REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Addr (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1050	IDC5	31:16	_	—		A	AD1IP<2:0>		AD1IS	i<1:0>	_	—	_		OC5IP<2:0>	>	OC5IS	i<1:0>	0000
IUEU	IFC5	15:0	_	_	_	IC	IC5IP<2:0>		IC5IS	<1:0>	_	_			T5IP<2:0>		T5IS∙	<1:0>	0000
10E0	IPC6	31:16		_		CM	P1IP<2:0>		CMP1	S<1:0>	_	_			FCEIP<2:0>		FCEIS	<1:0>	0000
101.0	11 00	15:0		_		RT	CCIP<2:0>	•	RTCCI	S<1:0>	_	-			FSCMIP<2:0	>	FSCM	S<1:0>	0000
1100	IPC7	31:16	_	—	_	U1IP<2:0>		U1IS<1:0>		—	—	_	SPI1IP<2:0>		>	SPI1IS	S<1:0>	0000	
1100	11 07	15:0	—	_	_	USI	USBIP<2:0> ⁽²⁾		USBIS<1:0> ⁽²⁾		—	—	-		CMP2IP<2:0	>	CMP2IS<1:0>		0000
1110	IPC8	31:16	-	—	-	SF	12IP<2:0>		SPI2IS<1:0>		—	—	-		PMPIP<2:0>	>	PMPIS<1:0>		0000
1110	11 00	15:0	—	—	—	С	NIP<2:0>		CNIS<1:0>		—	—	_	I2C1IP<2:0>		•	I2C1IS<1:0>		0000
1120	IPC9	31:16	-	—	-	U	4IP<2:0>		U4IS<1:0>		—	—	-	U3IP<2:0>		U3IS<1:0>		0000	
1120	11 00	15:0	—	—	—	120	C2IP<2:0>		12C2I5	S<1:0>	—	—	_	U2IP<2:0>			U2IS·	<1:0>	0000
1130	IPC10	31:16	—	—	—	DM	A1IP<2:0>		DMA1	S<1:0>	—	—	_	DMA0IP<2:0>		>	DMA0I	S<1:0>	0000
1100		15:0	_	—	_	CTI	MUIP<2:0>	•	CTMUI	S<1:0>	—	—	_		U5IP<2:0>		U5IS•	<1:0>	0000
11/10		31:16	-	—	-	CAI	NIP<2:0>(5)	CANIS	<1:0> (5)	—	—	-		CMP3IP<2:0	>	CMP3I	S<1:0>	0000
11-0		15:0	-	—	-	DM	A3IP<2:0>	•	DMA3	S<1:0>	—	—	-		DMA2IP<2:0	>	DMA2I	S<1:0>	0000
1150	IPC12	31:16	—	—	_		_	—	—	_	_	—	_	_	—	—	—		0000
1130	11 012	15:0	_	_	_	SPI	4P<2:0>(1))	SPI4S<	:1:0>(1)	_	_	-		SPI3P<2:0>	•	SPI3S	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

The following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 9-1: DMA BLOCK DIAGRAM

REGISTER 10-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—		—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—		_	—	—	_	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLE				TDNIE	SOEIE		URSTIE ⁽²⁾
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE		JULIE		DETACHIE ⁽³⁾
1	1	1				1		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt enabled
	0 = STALL interrupt disabled

bit 6 **ATTACHIE:** ATTACH Interrupt Enable bit 1 = ATTACH interrupt enabled

0 = ATTACH interrupt disabled

bit 5 **RESUMEIE:** RESUME Interrupt Enable bit

- 1 = RESUME interrupt enabled
- 0 = RESUME interrupt disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
 - 1 = Idle interrupt enabled
 - 0 = Idle interrupt disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
 - 1 = TRNIF interrupt enabled
 - 0 = TRNIF interrupt disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
 - 1 = SOFIF interrupt enabled
 - 0 = SOFIF interrupt disabled
- bit 1 UERRIE: USB Error Interrupt Enable bit⁽¹⁾
 - 1 = USB Error interrupt enabled
 - 0 = USB Error interrupt disabled
- bit 0 **URSTIE:** USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt enabled
 - 0 = URSTIF interrupt disabled
 - DETACHIE: USB Detach Interrupt Enable bit⁽³⁾
 - 1 = DATTCHIF interrupt enabled
 - 0 = DATTCHIF interrupt disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	-	—
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
7:0	UTEYE	_	_	USBSIDL	USBSIDL	_	_	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test enabled
 - 0 = Eye-Pattern Test disabled

bit 6-5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3 LSDEV: Low-Speed Device Enable bit

- 1 = USB module operates in Low-Speed Device mode only
- 0 = USB module operates in OTG, Host, or Full-Speed Device mode
- bit 2-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

11.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin, regardless of the output function including PPS remapped output functions to act as an open-drain output. The only exception is the l^2C pins that are open drain by default.

The open-drain feature allows the presence of outputs higher than V_{DD} (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. The ANSELx register bit, when cleared, disables the corresponding digital input buffer pin(s).

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module. The TRISx bits only control the corresponding digital output buffer pin(s).

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level; i.e., when ANSELx = 1; TRISx = x).

Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP.

11.1.4 INPUT CHANGE NOTIFICATION

The input Change Notification (CN) function of the I/O ports allows the PIC32MX1XX/2XX/5XX 64/100-pin devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

11.1.5 INTERNALLY SELECTABLE PULL-UPS AND PULL-DOWNS

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it, which are independent of any other I/O pin functionality (i.e., PPS, Open Drain, or CN). The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output. They should also be disabled on 5V tolerant pins when the pin voltage can exceed VDD.

An additional control register (CNCONx) is shown in Register 11-3.

11.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SS										Bi	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
EA5C	LIPCTOR	31:16	_	-	—	_	-	-	—	_	_	-	-	—	_	_	_	—	0000
17.50	020101	15:0	—	—	_	—	—	—	—	—	—	—	—	—		U2CTS	R<3:0>		0000
FA60	U3RXR	31:16	_			_	_			—	_			—	—	—	—	—	0000
17100	COLOUR	15:0	_			_	_			—	_			—		U3RXI	R<3:0>		0000
FA64	U3CTSR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	0001011	15:0	_	—			—	—	—	—		—	—			U3CTS	R<3:0>		0000
FA68	U4RXR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	•	15:0	—			—	_	—		—	—		—			U4RXI	R<3:0>		0000
FA6C	U4CTSR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
	0.0101	15:0	—			—	_	—		—	—		—			U4CTS	R<3:0>		0000
FA70	U5RXR	31:16	_	—			—	—	—	—		—	—		—	—	—		0000
		15:0	—			—	_	—		—	—		—			U5RXI	R<3:0>		0000
FA74	U5CTSR	31:16	—			—	_	—		—	—		—		—	—	—	—	0000
	000101	15:0	—			—	_	—		—	—		—			U5CTS	R<3:0>		0000
FA84	SDI1R	31:16	—			—	_	—		—	—		—		—	—	—	—	0000
17.01	obiiit	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI1F	<3:0>		0000
FA88	SS1R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	0011	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SS1R	<3:0>		0000
FA90	SDI2R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	ODIER	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI2F	<3:0>		0000
FAQ4	SS2R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.04	00210	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SS2R	<3:0>		0000
FA9C	SDI3R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
17.00	OBIOIR	15:0	—	—	-	_	—	—	—	—	—	—	-	—		SDI3F	<3:0>		0000
FAAO	SS3R	31:16	—	—	-	_	—	—	—	—	—	—	-	—	—	—	—	—	0000
1740	0001	15:0	_	_		_	—	_	—	—	_	_	—	_		SS3R	<3:0>		0000
EA A 8	SDIAB	31:16	_	_		_	—	_	—	—	_	_	—	_	_	_	_	_	0000
T AAO	3DI4K	15:0	_			_	_	_	—	—	_			_		SDI4F	<3:0>		0000
EAAC	994D	31:16	—	—			—	—	—	—	—	—	—	—	_	—	—	—	0000
FAAC	334R	15:0	—	_	—	-	—	—		—	—	_	—	—		SS4R	<3:0>		0000
EACO	CIPYP	31:16	—	_	—	_	_	_	—	_	_	_	_	—	_	—	—	—	0000
FAUG	UIKAK	15:0			—	_			_	—	_		—			C1RXI	R<3:0>		0000
EADO		31:16	_	—	—	_	_	_	—	_	_	—	—	—	_	—	—	—	0000
FADU	REFULNIK	15:0	_	_	-	_	—	_	—	—	_	_	—	_		REFCL	(IR<3:0>		0000
Legen	d	known y	alue on Re	seat: - u	nimplomont	od road a	'n' Reset	values are	shown in h	ovadocimal									

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 15-1: ICXCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)('x' = 1 THROUGH 5)

- bit 2-0 ICM<2:0>: Input Capture Mode Select bits
 - 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
 - 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
 - 101 = Prescaled Capture Event mode every sixteenth rising edge
 - 100 = Prescaled Capture Event mode every fourth rising edge
 - 011 = Simple Capture Event mode every rising edge
 - 010 = Simple Capture Event mode every falling edge
 - 001 = Edge Detect mode every edge (rising and falling)
 - 000 = Input Capture module is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- Master and Slave modes support
- Four different clock formats
- · Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 SUFO buffers act as 4/8/40 local data FIFO
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 17-1: SPI MODULE BLOCK DIAGRAM

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	-	—	—
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit		

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision

- Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
- bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	—	—	F		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
7.0		SSRC<2:0>		CLRASAM		ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

bit 14

R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
 - Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'
- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)

 - 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)
 - 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing SAMP bit ends sampling and starts conversion
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	_	-
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	-
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 23-7: C1RXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVF<15:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 23-8: C1TMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	CANTS<15:8>									
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	CANTS<7:0>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	CANTSPRE<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	CANTSPRE<7:0>									

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (C1CON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks . . 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: C1TMR will be paused when CANCAP = 0.

2: The C1TMR prescaler count will be reset on any write to C1TMR (CANTSPRE will be unaffected).

REGISTER	23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
hit 15	ELTEN4: Filter 4 Enchle bit
DIUID	FLIENT: Filler I Effable bit
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 12 8	ESEL 1 - Acceptance Mask 0 selected
DIL 12-0	11111 = Reserved
	•
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled
bit 6-5	MSEL 0-1:0>: Filter 0 Mack Select hits
bit 0-0	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	•
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGIST	ER 23-17:	C1FIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0 THROUGH 15) (CONTINUED)
bit 9	TXHALFIF: TXEN = 1: 1 = FIFO is 0 = FIFO is	: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) ≤ half full > half full
	TXEN = 0: Unused, rea	(FIFO configured as a receive buffer) ads '0'
bit 8	TXEMPTYI <u>TXEN = 1:</u> 1 = FIFO is 0 = FIFO is	F: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) empty not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> Unused, rea	(FIFO configured as a receive buffer) ads '0'
bit 7-4	Unimplem	ented: Read as '0'
bit 3	RXOVFLIF TXEN = 1: Unused, rea	: Receive FIFO Overflow Interrupt Flag bit (FIFO configured as a transmit buffer) ads '0'
	$\frac{TXEN = 0:}{1 = Overflo}$ $0 = No over$	(FIFO configured as a receive buffer) w event has occurred rflow event occured
bit 2	RXFULLIF	: Receive FIFO Full Interrupt Flag bit ⁽¹⁾
	$\frac{\text{TXEN} = 1:}{\text{Unused, res}}$	(FIFO configured as a transmit buffer) ads '0'
	$\frac{\text{TXEN} = 0:}{1 = \text{FIFO is}}$ $0 = \text{FIFO is}$	(FIFO configured as a receive buffer) full not full
bit 1	RXHALFIF	: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾
	$\frac{\text{TXEN} = 1}{\text{Unused, res}}$	(FIFO configured as a transmit buffer) ads '0'
	$\frac{\text{TXEN} = 0:}{1 = \text{FIFO is}}$ $0 = \text{FIFO is}$	(FIFO configured as a receive buffer) ≥ half full < half full
bit 0	RXNEMPT TXEN = 1: Unused, rea	YIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ (FIFO configured as a transmit buffer) ads '0'
	<u>TXEN = 0:</u> 1 = FIFO is 0 = FIFO is	(FIFO configured as a receive buffer) not empty, has at least 1 message empty

Note 1: This bit is read-only and reflects the status of the FIFO.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No. ⁽¹⁾	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
HV10	Vhvd	High Voltage Detect on VCAP pin	_	2.5	_	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2			ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	_		ns	_	
SP20	TSCF	SCKx Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—		ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_			ns	See parameter DO31	
SP35	TscH2DoV,	SDOx Data Output Valid after		—	15	ns	VDD > 2.7V	
	ISCL2DOV	SCKx Edge	—	—	20	ns	VDD < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_		ns	_	
SP41	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-34: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions (see Note 5): 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Device	Supply							
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5		Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss	_	AVDD	V	(Note 1)	
Referen	ce Inputs							
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)	
AD06	Vrefl	Reference Voltage Low	AVss		VREFH – 2.0	V	(Note 1)	
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0		AVDD	V	(Note 3)	
AD08	IREF	Current Drain	_	250	400	μA	ADC operating	
AD08a			—	—	3	μA	ADC off	
Analog	Input	1			1			
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—	
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/2	V	—	
AD14	VIN	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	—	
AD15	_	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10\ k\Omega \end{array}$	
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)	
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-		-		
AD20c	Nr	Resolution		10 data bit	S	bits	—	
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD22c	DNL	Differential Non-linearity	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)	
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD24c	EOFF	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V	
AD25c	_	Monotonicity		_	—		Guaranteed	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

(8) – One TAD for end of conversion.