

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256ht-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
31:24		NVMKEY<31:24>									
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
23:16	NVMKEY<23:16>										
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
15:8	NVMKEY<15:8>										
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
7:0				NVMK	EY<7:0>						

REGISTER 6-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 6-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	NVMADDR<31:24>									
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	NVMADDR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				NVMAE)DR<7:0>					

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess		Ô								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3280	DCH2CPTR	31:16	—	_	_	_		-	—	_	-	-	—	_	—	-	—	—	0000
0200		15:0	CHCPTR<15:0> 00									0000							
3290	DCH2DAT	31:16	—	—	—	_	_	_	—	—	_	—	—	_	—	—	—	—	0000
5290	DCH2DAI	15:0	_	—	—	_	—	_	—	—				CHPDA	AT<7:0>				0000
3240	DCH3CON	31:16	_	_	_				_				_	_	_		_	_	0000
32AU	DCH3CON	15:0	CHBUSY	_	—	_	_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
32B0	DCH3ECON	31:16	—	—	—	—	—	—	—	—				CHAIR					00FF
0200	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_			FFF8
32C0	DCH3INT	31:16	—	—	_	—	_	_	—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	
0200		15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	
32D0	DCH3SSA	31:16								CHSSA	<31:0>								0000
		15:0 31:16	000									0000							
32E0	DCH3DSA	15:0								CHDSA	<31:0>								0000
2250	DCH3SSIZ	31:16	_	_	_		_	_	—	_	_	_	—		—	_	—	—	0000
32FU	DCH333IZ	15:0	CHSSIZ<15:0> 0										0000						
3300	DCH3DSIZ	31:16	_	_	_				—	-			_	_	_		—	_	0000
3300	DCI ISD3IZ	15:0								CHDSIZ	Z<15:0>								0000
3310	DCH3SPTR	31:16	—	_	—	_	-	-	—	—	_	-	—	_	—	-	—	—	0000
3310	Denisor IIX	15:0								CHSPT	R<15:0>		-					-	0000
3320	DCH3DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0020	DOI 10D1 111	15:0								CHDPTI	R<15:0>								0000
3330	DCH3CSIZ	31:16	_	_		_	—	_	—	—	_	—	_		—	—	—	—	0000
		15:0								CHCSIZ	Z<15:0>								0000
3340	DCH3CPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0								CHCPTI	R<15:0>								0000
3350	DCH3DAT	31:16	—	—	—	—	_	_	—	—	—	—	—	_	—	—	—	—	0000
2000	_ 5.165.11	15:0		_		_		—	—					CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	-	_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	_	-	_	-		—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHSPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				CHSPTF	R<7:0>					

REGISTER 9-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 9-15: DCHxDPTR: DMA CHANNEL 'x' DESTINATION POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		_	_	_	—		—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		_	_	_	—		—	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHDPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				CHDPTF	R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
-----------	----------------------------

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0							
31:24	—	—	—	—	—	-	—	—	
23:16	U-0	U-0							
23.10	—	_	—	—				—	
15:8	U-0	U-0							
10.0	_	_	_	_	_	_	_	—	
	R/W-0	R/W-0							
7:0	DTOFF			DTOFE	DENIGEE	0001055	CRC5EE ⁽¹⁾	DIDEE	
	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE ⁽²⁾	PIDEE	

REGISTER 10-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
 - 1 = BTSEF interrupt enabled
 - 0 = BTSEF interrupt disabled
- bit 6 **BMXEE:** Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt enabled
 - 0 = BMXEF interrupt disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt enabled
 - 0 = DMAEF interrupt disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt enabled
 - 0 = BTOEF interrupt disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt enabled
 - 0 = DFN8EF interrupt disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt enabled
 - 0 = CRC16EF interrupt disabled
- bit 1 **CRC5EE:** CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt enabled
 - 0 = CRC5EF interrupt disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt enabled
 - 0 = EOF interrupt disabled
- bit 0 **PIDEE:** PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt enabled
 - 0 = PIDEF interrupt disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16	_	—	—	_	—	-			_	—	_		—		—	—	0000
0200	/	15:0	—	—	—	—	—	—	—	-	—	_	—	_	ANSELC3	ANSELC2	ANSELC1	—	000E
6210	TRISC	31:16		—	—	—	_	_	_		_		—	_	_	_	—	_	0000
02.0		15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	-	—	_	—	_	—	—	—	—	F000
6220	PORTC	31:16	—	—	—	—	_	_	_	_	—	_	—	_	—	_	—		0000
0220		15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	_	—	—	xxxx
6230	LATC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
0200		15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	—	—	_	—	—	xxxx
6240	ODCC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
02.10	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6250	CNPUC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6260	CNPDC	31:16		—	—	—	—	_	_	_	—	—	—		—	_	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6270	CNCONC	31:16				_					—	_	—		—		—		0000
0270	oncono	15:0	ON		SIDL						—	_	—	_	—		—		0000
6280	CNENC	31:16		—							—	_	—	_	—		—		0000
0200		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	_	_		—		—	_	—		—	_	0000
6200	CNSTATC	31:16	_	—	—	_	_				-	—	-		—		—	—	0000
0290	GNOTAIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_				-	_			_		—	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 11-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

ss			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16		_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	000
FA5C	U2CTSR	15:0	_	—	l —	—	—	—	_	_		_	—	—		U2CTS	R<3:0>		000
FA00		31:16	—	—	—	—	_	—	_	_	_		—	—	—	—	—	—	000
FA60	U3RXR	15:0	—	—	—	—		—						—		U3RX	R<3:0>	•	000
5404	LIGOTOR	31:16	—	—	—	—	—	—	_			_	_	—	—	—	—	—	000
FA64	U3CTSR	15:0	—	—	—	—		—						—		U3CTS	SR<3:0>	•	000
	U4RXR	31:16	—	—	—	—		—						—	—	—	—	—	000
FA68	U4RXR	15:0	—	—	—	—	—	—	—	—	_	—	—	—		U4RX	R<3:0>		000
FA00		31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	000
FA6C	U4CTSR	15:0	—	—	—	—	—	—	—	—	_	—	—	—		U4CTS	SR<3:0>		000
EA 70		31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	000
FA70	U5RXR	15:0	—	—	—	—	—	—	—	—	_	—	—	—		U5RX	R<3:0>		000
	U5CTSR	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	000
FA74		15:0	—	—	—	—	—	—	—	—	_	—	—	—		U5CTS	SR<3:0>		000
FA84	SDI1R	31:16	_	—	—	—	_	—	_	_	_	_	_	—	_	—	—	—	000
FA04		15:0	_	—	—	—	_	—	_	_	_	_	_	—		SDI1F	R<3:0>		000
FA88	SS1R	31:16	_	—	—	—	_	—	_	-		_	—	—	_	—	—	—	000
FA00		15:0	—	—	—	—	—	—	—			—	—	—		SS1F	R<3:0>		000
FA90		31:16	—	—	—	—	—	—	—			—	—	—	—	—	—	—	000
FA90	SDI2R	15:0	—	—	—	—	—	—	—			—	—	—		SDI2F	R<3:0>		000
EA04	SS2R	31:16	—	—	—	—	—	—	_			—	_	—	—	—	—	—	000
FA94	332R	15:0	—	—	—	—	—	—	_			—	_	—		SS2F	R<3:0>		000
FA9C	SDI3R	31:16	—	—	—	—	—	—	_	-	-	—	_	—	—	—	—	—	000
TASC	SDISK	15:0	—	—	—	—	—	—	_	-	-	—	_	—		SD13F	R<3:0>		000
FAA0	SS3R	31:16	—	—	—	—	—	—	_			—	_	—	—	—	—	—	000
FAAU	333K	15:0	—	—	—	—	—	—	_	-	-	—	_	—		SS3F	R<3:0>		000
FAA8	SDI4R	31:16	—	—	—	—	—	—	—	-	-	—	_	—	—	—	—	—	000
FAAo	3DI4K	15:0	—	—	—	—	—	—	—	-	-	—	_	—		SDI4F	R<3:0>		000
FAAC	SS4R	31:16	—	—	—	—	—	—	—	-	-	—	_	—	—	—	—	—	000
IAAU	334K	15:0	_	—	—	—	—	—	_	-	-	_	—	—		SS4F	R<3:0>		000
FAC8	C1RXR	31:16	_	—	—	—	—	—	_	-	-	_	—	—	—	-	—	—	000
	UIKAR	15:0	_	—	—	—	—	—	_	_	—	_	—	—		C1RX	R<3:0>		000
FAD0	REFCLKIR	31:16		—	—	_	—	—	_	_	-	—		_	—	-	—	_	000
FAD0	NEFULNIK	15:0	—	-	—	-	—	-	—	—		—	—	-		REFCLI	<ir<3:0></ir<3:0>		0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

NOTES:

REGIST	ER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	<pre>URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 =Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)</pre>
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state. 1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

REGISTER 23-1: C1CON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13	SIDLE: CAN Stop in Idle bit
	1 = CAN Stops operation when system enters Idle mode0 = CAN continues operation when system enters Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	CANBUSY: CAN Module is Busy bit
	1 = The CAN module is active
	0 = The CAN module is completely disabled
bit 10-5	Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID) 10010 = Compare up to data byte 2 bit 6 with EID17 (C1RXFn<17>)

•

-

00001 = Compare up to data byte 0 bit 7 with EID0 (C1RXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN15	MSEL1	5<1:0>	FSEL15<4:0>						
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	FLTEN14	MSEL1	4<1:0>	FSEL14<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	FLTEN13	MSEL1	3<1:0>	FSEL13<4:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	FLTEN12	MSEL1	2<1:0>	FSEL12<4:0>						

REGISTER 23-13: C1FLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 bit 30-29	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

27.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. These PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

27.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

27.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

27.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

27.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is Halted.
- The system clock source is typically shutdown. See Section 27.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 19-10 **PWP<9:0>:** Program Flash Write-Protect bits

DIT 19-10	PWP<9:0>: Program Flash Write-Protect bits
	Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages.
	1111111111 = Disabled
	1111111110 = Memory below 0x0400 address is write-protected 1111111101 = Memory below 0x0800 address is write-protected
	1111111100 = Memory below 0x0C00 address is write-protected
	1111111011 = Memory below 0x1000 (4K) address is write-protected
	1111111010 = Memory below 0x1400 address is write-protected
	1111111001 = Memory below 0x1800 address is write-protected
	1111111000 = Memory below 0x1C00 address is write-protected 1111110111 = Memory below 0x2000 (8K) address is write-protected
	111110110 = Memory below 0x2400 address is write-protected
	1111110101 = Memory below 0x2800 address is write-protected
	1111110100 = Memory below 0x2C00 address is write-protected
	1111110011 = Memory below 0x3000 address is write-protected
	1111110010 = Memory below 0x3400 address is write-protected 1111110001 = Memory below 0x3800 address is write-protected
	1111110000 = Memory below 0x3C00 address is write-protected
	1111101111 = Memory below 0x4000 (16K) address is write-protected
	:
	• 1110111111 = Memory below 0x10000 (64K) address is write-protected
	•
	•
	1101111111 = Memory below 0x20000 (128K) address is write-protected
	•
	• 1011111111 = Memory below 0x40000 (256K) address is write-protected
	•
	· · · · · · · · · · · · · · · · · · ·
	011111111 = Memory below 0x80000 (512K) address is write-protected
	•
	000000000 = All possible memory is write-protected
	Note: These bits are effective only if Boot Flash is also protected by clearing the BWP bit (DEVCFG0<24>).
bit 9-5	Reserved: Write '1'
bit 4-3	ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
	11 = PGEC1/PGED1 pair is used
	10 = PGEC2/PGED2 pair is used
	01 = PGEC3/PGED3 pair is used 00 = Reserved
bit 2	JTAGEN: JTAG Enable bit ⁽¹⁾
	1 = JTAG is enabled
	0 = JTAG is disabled
bit 1-0	DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
	1x = Debugger is disabled
	0x = Debugger is enabled
Note 1.	This hit sets the value for the JTAGEN hit in the CEGCON register

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
R	R	R	R	R	R	R	R			
	VER<	:3:0> ⁽¹⁾		DEVID<27:24> ⁽¹⁾						
R	R	R	R	R	R	R	R			
DEVID<23:16>(1)										
R	R	R	R	R	R	R	R			
DEVID<15:8> ⁽¹⁾										
R	R	R	R	R	R	R	R			
DEVID<7:0> ⁽¹⁾										
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R R R R R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ VER<	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R			

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logonan						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

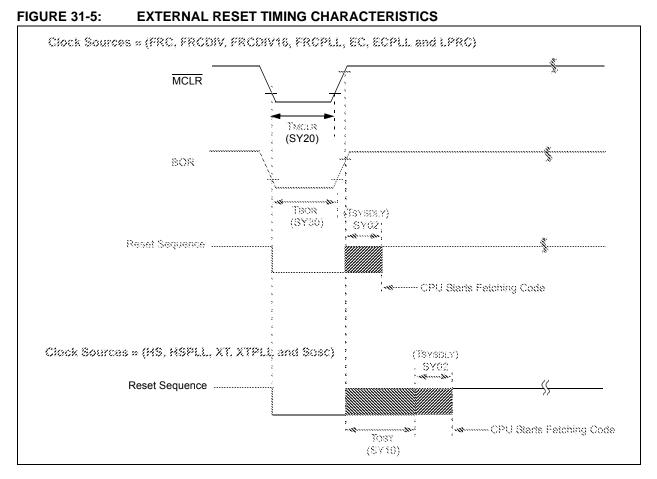
Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Temp. Range	Max. Frequency
Characteristic	VDD Range (in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family
DC5	VBOR-3.6V	-40°C to +105°C	40 MHz

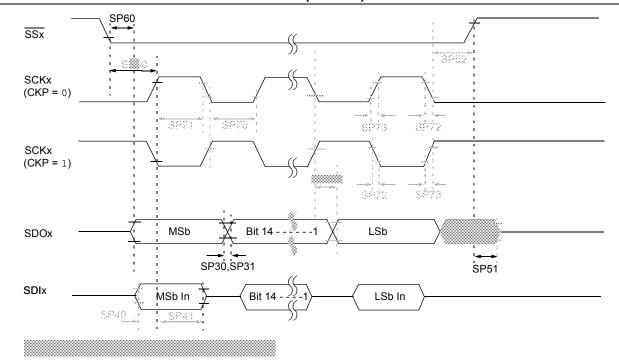
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.


TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	Pint + Pi/o		W	
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(Tj – Ta)/θja			W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP, 10 mm x 10 mm	θJA	55	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 12 mm x 12 mm	θJA	52	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 14 mm x 14 mm	θJA	50		°C/W	1


Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

AC CHARACTERISTICS			$\label{eq:constraint} \begin{array}{ c c c } \hline Standard Operating Conditions: 2.3V to 3.6V \\ \hline (unless otherwise stated) \\ \hline Operating temperature \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \\ \hline \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	—	400	600	μS	
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	_
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS	—
SY30	TBOR	BOR Pulse Width (low)		1		μS	_

Note 1: These parameters are characterized, but not tested in manufacturing.

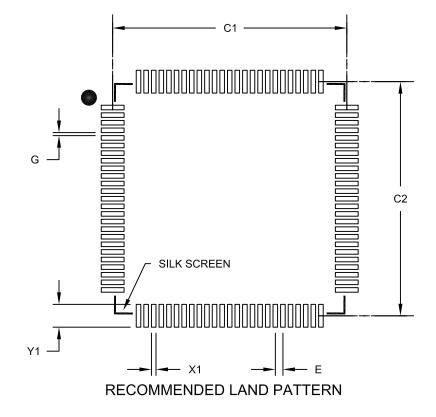
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 31-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Тѕск/2	_		ns	_
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP35	TscH2doV,			_	20	ns	VDD > 2.7V
	TscL2DoV	SCKx Edge		_	30	ns	VDD < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—		ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

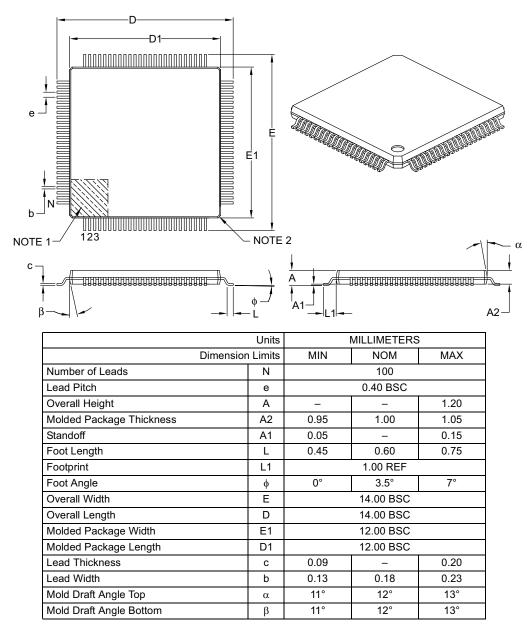
NOTES:

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2				
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B