

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

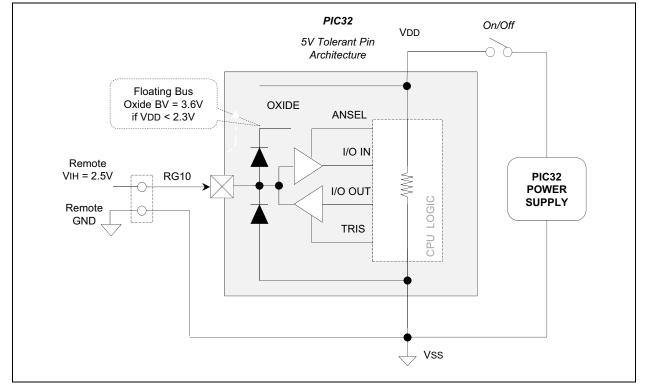
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256l-50i-pf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.9.2 5V TOLERANT INPUT PINS

The internal high side diode on 5V tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-7. Voltages on these pins, if VDD < 2.3V, should not exceed roughly 3.2V relative to Vss of the PIC32 device. Voltage of 3.6V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability. If a remotely powered "digital-only" signal can be guaranteed to always be \leq 3.2V relative to Vss on the PIC32 device side, a 5V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than Vss - 0.3V.

NOTES:

6.1 Control Registers

TABLE 6-1: FLASH CONTROLLER REGISTER MAP

ess		a								Bi	ts								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400	NVMCON ⁽¹⁾	31:16	_	—	—	—	_		—		—	—	—	—			—	—	0000
1400		15:0	WR	WREN	WRERR	LVDERR	LVDSTAT		_	-	_	_	_	_		NVMO	P<3:0>		0000
F410	NVMKEY	31:16								NVMKE	/<31.0>								0000
		15:0									1501.02								0000
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	P<31.05								0000
1 420	NVINADDR	15:0								INVIVIADE	K~51.02								0000
F430	NVMDATA	31:16		NVMDATA<31:0>															
1430	NVINDAIA	15:0								NVIVIDAI	A-31.02								0000
F440	NVMSRC	31:16		NVMSRCADDR<31:0>															
F440	ADDR	15:0							I	VIVISRUAI	JUR-31.02	•							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	31:24	_	—	_	—	_	—	_	—
Image: Normal system Image: No	00:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8 WR WREN ⁽¹⁾ WRERR ⁽²⁾ LVDERR ⁽²⁾ LVDSTAT ⁽²⁾ — _ _ _ _ _ _ _ _ _ _ _ _ _ <td>23.10</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>_</td> <td>—</td> <td>—</td> <td>—</td>	23.10	—	—	—	—	_	—	—	—
WR WREN'' WRER'' LVDERR'' LVDSTAT'' — Image: Main Main Main Main Main Main Main Main	45.0	R/W-0	R/W-0	R-0	R-0	-		U-0	U-0
	15:8	WR	WREN ⁽¹⁾	WRERR ⁽²⁾	LVDERR ⁽²⁾	LVDSTAT ⁽²⁾		_	—
1.0 — — — — NVMOP<3:0>	7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	7:0	_	—	-	—		NVMOF	P<3:0>	

REGISTER 6-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation complete or inactive
bit 14	WREN: Write Enable bit ⁽¹⁾
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
	This is the only bit in this register reset by a device Reset.
bit 13	WRERR: Write Error bit ⁽²⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽²⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽²⁾
	This bit is read-only and is automatically set, and cleared, by hardware.
	1 = Low-voltage event active
	0 = Low-voltage event NOT active
bit 10-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation bits
	These bits are writable when WREN = 0 .
	1111 =Reserved
	•
	•
	•
	0111 = Reserved
	0110 =No operation 0101 =Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 =Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 =Row program operation: programs row selected by NVMADDR, if it is not write-protected
	0010 =No operation
	0001 =Word program operation: programs word selected by NVMADDR, if it is not write-protected
	0000 = No operation
Note 1:	This bit is cleared by any reset (i.e., POR, BOR, WDT, MCLR, SWR).
-	

2: This bit is only cleared by setting NVMOP = 0000, and initiating a Flash WR operation or a POR. Any other kind of reset (i.e., BOR, WDT, MCLR) does not clear this bit.

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3060	DCH0CON	31:16 15:0	— CHBUSY	—	—	_	—	—	—	— CHCHNS	— CHEN	— CHAED	— CHCHN	— CHAEN	—	— CHEDET		-	00
		31:16																	
3070	DCH0ECON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN			_		FF
		31:16	_	_	—	_	_	_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
3080	DCH0INT	15:0	_	_	_	_	_	_			CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
3090	DCH0SSA	31:16 15:0								CHSSA	<31:0>				•				00
30A0	DCH0DSA	31:16 15:0								CHDSA	<31:0>								00
	D.0110.0017	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	00
30B0	DCH0SSIZ	15:0								CHSSIZ	Z<15:0>								0.0
2000	DCH0DSIZ	31:16	_	—	_	—	_	_		_	_	_	_	_	_	_	—	_	00
5000	DCHUD3IZ	15:0								CHDSIZ	Z<15:0>								00
3000	DCH0SPTR	31:16	—	_	—	—	_	_	—	-	_	—			_	—	_		00
0000	Donioor III	15:0								CHSPTI	R<15:0>								00
30E0	DCH0DPTR	31:16	—	_	—	—	—	—	—		_	—		—	—	—	_	_	00
		15:0								CHDPTI	R<15:0>								00
30F0	DCH0CSIZ	31:16	—		—	—	—	—			-		—	—		—	_	_	00
		15:0					_			CHCSIZ	2<15:0>	_		_					00
3100	DCH0CPTR	31:16 15:0	—				_			CHCPTI					_	—	_		00
		31:16		_	_	_	_	_	_			_	_			_	_	_	00
3110	DCH0DAT	15:0	_	_	_	_	_	_	_	_					AT<7:0>				00
		31:16	_	_	_	_	_	_		_	_	—	—	_	_	_	_	_	00
3120	DCH1CON	15:0	CHBUSY	_	_	_	_	_	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	<1:0>	00
0400	DOLUEDON	31:16	_	_	_	_	_	_	_	-				CHAIR	Q<7:0>				00
3130	DCH1ECON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF
3140	DCH1INT	31:16		_		_	_			_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
5140	DCHIINI	15:0	—		—	_	_	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
3150	DCH1SSA	31:16 15:0 CHSSA<31:0>																	
3160	DCH1DSA	31:16 15:0								CHDSA	<31:0>								00

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

REGIOI											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	-	—	—	-	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	-	—	—	—	—	_			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—		_			—	—			
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
7.0	UACTPND	—	_	USLPGRD	USBBUSY	_	USUSPEND	USBPWR			

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

Logonal				
R = Readable bit W = Writable bit		U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—			-			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	-	_	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0 LSPDEN DEVADDR<6:0>								

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	-	-	-	_	-	-			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	_	_	_	—	-	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	-	—	-	-	-	—		—			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0 FRML<7:0>											

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	-	-	-		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-	-	-	-		—
7:0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
7:0	UTEYE	_	_	USBSIDL	USBSIDL		_	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test enabled
 - 0 = Eye-Pattern Test disabled

bit 6-5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3 LSDEV: Low-Speed Device Enable bit

- 1 = USB module operates in Low-Speed Device mode only
- 0 = USB module operates in OTG, Host, or Full-Speed Device mode
- bit 2-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

TABLE 14-1: WATCHDOG TIMER REGISTER MAP

ess		e		Bits															
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	WDTCON	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	-	—	0000
0000	WDICON	15:0	ON	—	—	—	—	—	_	—	_	SWDTPS<4:0> WDTWINEN WDTCLR 0					0000		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		0									Bits								8
Virtual Address (BF80_#)	31		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_	_	-	_	-					CAL<	:9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	_		_	RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—	_		—	-					-		—	—	-	-	—	0000
0210	IN OALIN	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARPT	<7:0>				0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>		MIN10<3:0>					MIN01<3:0>			xxxx
0220	INTO THME	15:0		SEC1	0<3:0>			SEC07	1<3:0>		—	—	_	—	_	—	—	_	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>			MONTH10)<3:0>			MONTH	01<3:0>		xxxx
0230	RIODAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	—	_	—		WDAY0	1<3:0>		xx00
0240	ALRMTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>		SEC01<3:0>			—	—	_	—	_	—	—	_	xx00	
0250	ALRMDATE	31:16	—	_	_	_					MONTH10)<3:0>			MONTH	01<3:0>		00xx	
0200		15:0		DAY1	0<3:0>			DAY01<3:0>			_	_	_	—		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

TABLE 23-1: CAN1 REGISTER SUMMARY (CONTINUED)

ess										Bits	;								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
B340	C1FIFOBA	31:16 15:0								C1FIFOBA	<31:0>								0000
B350	C1FIFOCONn	31:16		_		_	_	_	_	_	—	_	_		ŀ	SIZE<4:0>			0000
D330	(n = 0-15)	15:0	_	FRESET	UINC	DONLY	_	—	—	—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	N TXPRI<1:0>		0000
B360	C1FIFOINTn	31:16	_	-	-	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	—	—	—	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
B300	(n = 0-15)	15:0	_	-	Ι	-	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	_	—	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
B370	C1FIFOUAn	31:16									<21.0>								0000
6370	(n = 0-15)	15:0		C1FIFOUA<31:0> 0000											0000				
B380	C1FIFOCIn	31:16		_	_	_		—		_	—	—	-		_	_	_		0000
5300	(n = 0-15)	15:0	-																

Legend: Note 1 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more 1: information.

REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 20-16 FSEL6<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN5: Filter 17 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL4<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P						
31:24			—	-	—	_	FWDTWI	NSZ<1:0>						
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P						
23:16	FWDTEN	WINDIS	—		WDTPS<4:0>									
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P						
15:8	FCKSM	/<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>						
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P						
7:0	IESO —		FSOSCEN	FSOSCEN —		— FNC		OSC<2:0>						

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

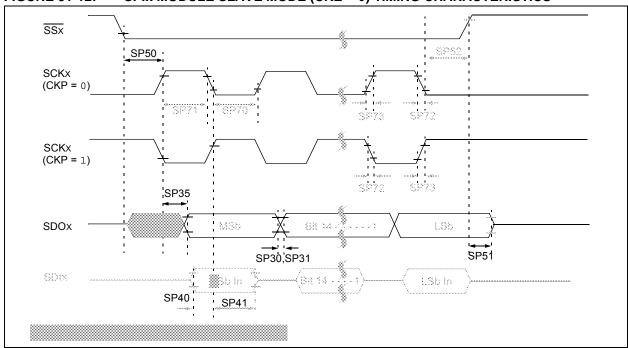
bit 31-26 Reserved: Write '1'

bit 25-24 **FWDTWINSZ:** Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software


bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

~	
	10100 = 1:1048576
	10011 = 1:524288
	10010 = 1:262144
	10001 = 1:131072
	10000 = 1:65536
	01111 = 1:32768
	01110 = 1:16384
	01101 = 1:8192
	01100 = 1:4096
	01011 = 1:2048
	01010 = 1:1024
	01001 = 1:512
	01000 = 1:256
	00111 = 1:128
	00110 = 1:64
	00101 = 1:32
	00100 = 1:16
	00011 = 1 :8
	00010 = 1:4
	00001 = 1:2
	00000 = 1:1
	All other combinations not shown result in operation = 10100
	· ·

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-ten					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—	_	ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	_	_	ns	—	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_	_	ns	See parameter DO31	
SP35	TSCH2DOV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
	TscL2DoV	SCKx Edge	—	—	20	ns	VDD < 2.7V	
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175	_	_	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

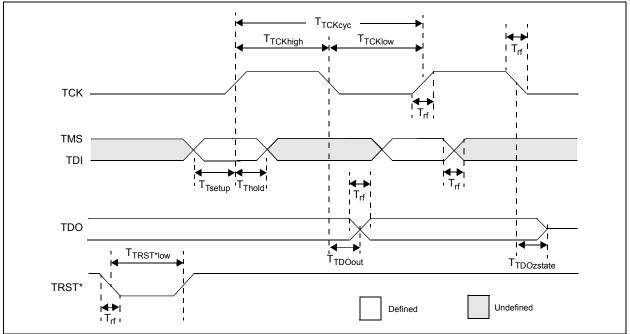
3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-34: ADC MODULE SPECIFICATIONS

		ACTERISTICS	Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated)									
		ACTERISTICS	Operating te	emperature			C for Industrial °C for V-temp					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions					
Device	Supply											
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_					
AD02	AVss	Module Vss Supply	Vss	_	AVdd	V	(Note 1)					
Referen	ce Inputs											
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)					
AD06	Vrefl	Reference Voltage Low	AVss		Vrefh – 2.0	V	(Note 1)					
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0		AVDD	V	(Note 3)					
AD08 AD08a	IREF	Current Drain		250 —	400 3	μΑ μΑ	ADC operating ADC off					
Analog	Input	•					·					
AD12	VINH-VINL	Full-Scale Input Span	VREFL	—	Vrefh	V	—					
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/2	V	_					
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	—					
AD15	_	Leakage Current	—	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3.3V$ Source Impedance = $10 \text{ k}\Omega$					
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)					
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-								
AD20c	Nr	Resolution		10 data bit	S	bits	_					
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V					
AD22c	DNL	Differential Non-linearity	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)					
AD23c	Gerr	Gain Error	> -1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V					
AD24c	Eoff	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V					
AD25c	—	Monotonicity		_	—	_	Guaranteed					

Note 1: These parameters are not characterized or tested in manufacturing.

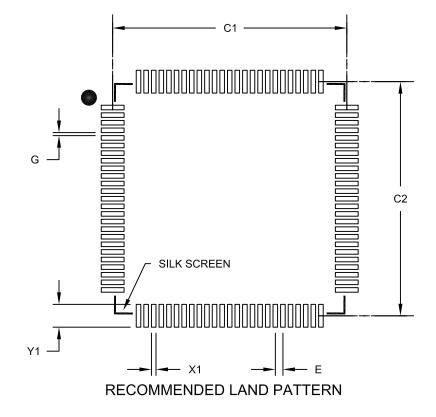

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS


TABLE 31-42: EJTAG TIMING REQUIREMENTS

АС СНА	(unles	s otherw	ise state	prditions: 2.3V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp		
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions
EJ1	Ттсксус	TCK Cycle Time	25		ns	
EJ2	Ттскнідн	TCK High Time	10		ns	_
EJ3	TTCKLOW	TCK Low Time	10		ns	_
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	-	5	ns	_
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_
EJ8	TTRSTLOW	TRST Low Time	25		ns	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	_	—	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	Dimension Limits					
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		15.40			
Contact Pad Spacing	C2		15.40			
Contact Pad Width (X100)	X1			0.30		
Contact Pad Length (X100)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B