

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	
IADLE I-I.	FINUUT I/U DESCRIFTIONS	CONTINUED)

	Pin N	umber											
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description								
INT0	35 ⁽¹⁾ , 46 ⁽²⁾	55 ⁽¹⁾ , 72 ⁽²⁾	I	ST	External Interrupt 0								
INT1	PPS	PPS	Ι	ST	External Interrupt 1								
INT2	PPS	PPS	Ι	ST	External Interrupt 2								
INT3	PPS	PPS	Ι	ST	External Interrupt 3								
INT4	PPS	PPS	Ι	ST	External Interrupt 4								
RA0	_	17	I/O	ST									
RA1	_	38	I/O	ST									
RA2	—	58	I/O	ST									
RA3	—	59	I/O	ST	1								
RA4	_	60	I/O	ST	1								
RA5	_	61	I/O	ST									
RA6	_	91	I/O	ST	PORTA is a bidirectional I/O port								
RA7	_	92	I/O	ST									
RA9	_	28	I/O	ST									
RA10	_	29	I/O	ST									
RA14	_	66	I/O	ST									
RA15		67	I/O	ST									
RB0	16	25	I/O	ST									
RB1	15	24	I/O	ST									
RB2	14	23	I/O	ST									
RB3	13	22	I/O	ST									
RB4	12	21	I/O	ST									
RB5	11	20	I/O	ST									
RB6	17	26	I/O	ST	1								
RB7	18	27	I/O	ST									
RB8	21	32	I/O	ST	PORTB is a bidirectional I/O port								
RB9	22	33	I/O	ST	1								
RB10	23	34	I/O	ST	1								
RB11	24	35	I/O	ST	1								
RB12	27	41	I/O	ST	1								
RB13	28	42	I/O	ST	1								
RB14	29	43	I/O	ST	1								
RB15	30	44	I/O	ST	1								
Legend: (CMOS = CN	IOS compati t Trigger inpl	ble inpu	it or output	Analog = Analog input I = Input O = Output Is TTL = TTL input buffer P = Power								

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R R R		R	R	R R		R	R						
31:24	BMXPFMSZ<31:24>													
00.40	R R		R	R	R R		R	R						
23:16	BMXPFMSZ<23:16>													
45.0	R	R	R	R	R	R	R	R						
15:8	BMXPFMSZ<15:8>													
7.0	R	R R		R	R	R	R	R						
7:0				BMXPF	MSZ<7:0>									

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash 0x00080000 = Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range			Bit 29/21/13/5	Bit Bit 28/20/12/4 27/19/11/3		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R R		R	R	R	R	R	R						
31:24	BMXBOOTSZ<31:24>													
00.40	R	R	R	R	R	R	R	R						
23:16	BMXBOOTSZ<23:16>													
45.0	R	R	R	R	R	R	R	R						
15:8	BMXBOOTSZ<15:8>													
7.0	R	R	R	R	R	R	R	R						
7:0				BMXBO	OTSZ<7:0>									

Legend:					
R = Readable bit	W = Writable bit	Vritable bit U = Unimplemented bit, read as '			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB Boot Flash

© 2014-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16						
45.0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0						

REGISTER 5-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

5					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 5-1 for the exact bit definitions.

REGISTER 5-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0	

Legend:					
R = Readable bit	W = Writable bit	itable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 IEC31-IEC0: Interrupt Enable bits

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 5-1 for the exact bit definitions.

9.1 Control Registers

TABLE 9-1: DMA GLOBAL REGISTER MAP

ess	Register Name ⁽¹⁾	a	Bits															6	
Virtual Address (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000	DMACON	31:16	_	_	—	_	—	_	—	_	_	_	_	_	_	_	_		0000
3000	DIVIACON	15:0	ON	—	_	SUSPEND	DMABUSY	_	—	_	—	—	—	_	—	_	—	—	0000
2010	DMASTAT	31:16	_	—	_			_	—	_	—	—	—	_	—	_	—	—	0000
3010	DIVIASTAT	15:0		-	_	_	—	_	_	—	-	—	_	—	RDWR	C	MACH<2:0	>	0000
2020	DMAADDR	31:16								DMAADD	7~21.05								0000
3020	DIVIAADDR	15:0								DIVIAADD	1.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 9-2: DMA CRC REGISTER MAP

ess		â	Bits																
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCRCCON	31:16	_	_	BYTO	<1:0>	WBO	—	_	BITO	—	—	_	_	_	_	—	_	0000
3030	DURUUUN	15:0	_		—			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP		_	C	RCCH<2:0	>	0000
3040	DCRCDATA	31:16									TA-21:05								0000
3040	DCRODAIA	15:0		DCRCDATA<31:0>															
3050	DCRCXOR	31:16		DCRCXOR<31:0>															
3030	DONOXOR	15:0		DCRCX0R<31.0>															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	-	—	-	_	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	-	—	-	_	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-	—	-	_	-	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CNT	<7:0>			

REGISTER 10-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **CNT<7:0>:** SOF Threshold Value bits Typical values of the threshold are: 01001010 = 64-byte packet 00101010 = 32-byte packet 00011010 = 16-byte packet 00010010 =8-byte packet

REGISTER 10-17: U1BDTP1: USB BDT PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	-	—	-	-	—	—	-	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		—			—	—		—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	-	—	-	-	—	—	-	—		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
7.0	BDTPTRL<15:9>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-1 **BDTPTRL<15:9>:** BDT Base Address bits This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory. The 32-bit BDT base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

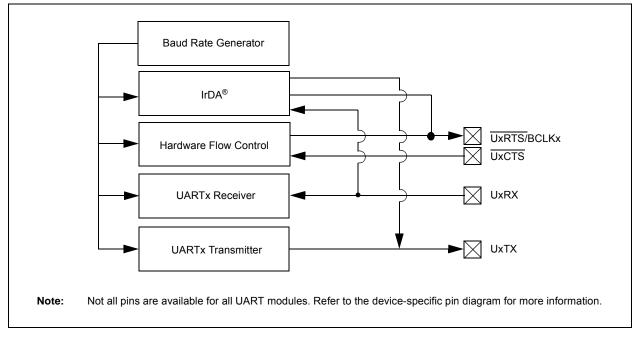
ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	—	-	—	—	_	_	—	_		—	—	-	—	—	-	—	0000
0000	JUIGEEO	15:0	ANSELG15	_		—	—	—	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_		—	_		83C0
6610	TRISG	31:16	—	_	_	—	—	_	—	_	_	—	_	_	_	—	_	_	0000
0010	11100	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16	_		_	_	_	—	_	_		_	_		_	-		_	0000
0020	FURIG	15:0	RG15	RG14	RG13	RG12	-	—	RG9	RG8	RG7	RG6	_	—	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	_	—	—	—	-	—	—		—	—	_	—	_	_	_	—	0000
0030	LAIG	15:0	LATG15	LATG14	LATG13	LATG12		_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	_	_	_	—		_	_		_	_	_	_	_	_	_	_	0000
0040	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
6650	CNPUG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	—	_	—	0000
0050	CINFUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12		_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
6660	CNPDG	31:16	_	—	—	—		—	—		—	—	_	—	_	_	_	—	0000
0000	CINFUG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12		—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
6670	CNCONG	31:16	_	—	—	—		—	—		—	—	_	—	_	_	_	—	0000
0070	CINCOING	15:0	ON	_	SIDL	—		_	_		_	_	_	_	_	_	_	_	0000
6690	CNENG	31:16	_	—	—	—	_	_	—	—	_	—	_	_	_	_	_	_	0000
6680	CNENG	15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
		31:16	_	_	—	_	_	_	—	_	-	—	_	_	—	_	-	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_		CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX/5XX 64/100-pin family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, odd or no parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0 U-0		U-0	U-0	U-0	U-0	U-0	R/W-0				
31:24	—	_	—	_	_	_	_	ADM_EN				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	ADDR<7:0>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1				
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT				
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0				
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 =Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

- If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		0								Bi	ts								ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9100	ADC1BUF9	31:16 15:0							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000
9110	ADC1BUFA	31:16 15:0							ADC Res	ult Word A	(ADC1BUF	A<31:0>)							0000 0000
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>)															
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)							0000
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000 0000
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)															
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)							0000 0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	-	—	-	-	-	_	_	—						
22:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0						
23:16	_	—	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN						
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8				TERRCI	NT<7:0>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0		RERRCNT<7:0>												

REGISTER 23-5: C1TREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)

bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)

bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT \ge 96)

bit 16 EWARN: Transmitter or Receiver is in Error State Warning

- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 23-6: C1FSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_		_	—	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	—	_	_	_	_
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FIFOIP<15:0>: FIFOx Interrupt Pending bits

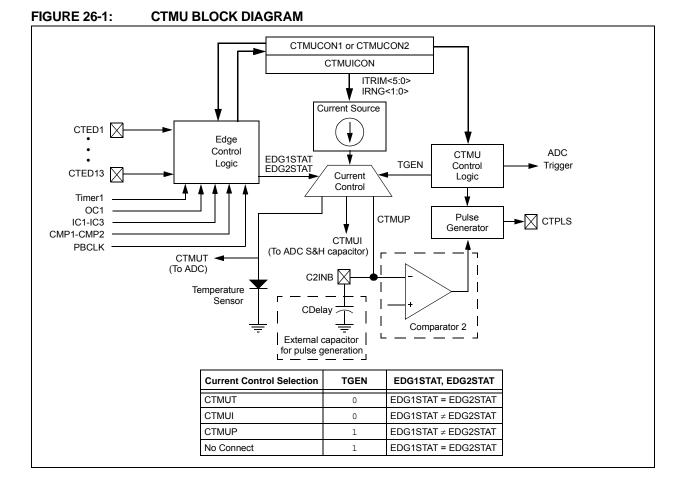
1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

REGISTER 23-16: C1FIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0 THROUGH 15) (CONTINUED)

- bit 7 TXEN: TX/RX Buffer Selection bit 1 = FIFO is a Transmit FIFO 0 = FIFO is a Receive FIFO TXABAT: Message Aborted bit⁽²⁾ bit 6 1 = Message was aborted 0 = Message completed successfully TXLARB: Message Lost Arbitration bit⁽³⁾ bit 5 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received. TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority
 - 01 Low Internetiate message
 - 00 = Lowest message priority
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (C1CON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167) in the "PIC32 Family Reference Manual", which is available the site from Microchip web (www.microchip.com).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 26-1.

© 2014-2016 Microchip Technology Inc.

27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- · Configuration bit select lock

27.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

27.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24		_	_	—	—	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
23:16		_		—	—	FPLLODIV<2:0>		
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
15:8	UPLLEN ⁽¹⁾	_	_	—	—	UPLLIDIV<2:0> ⁽¹⁾		
7:0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
	_	FPLLMUL<2:0>			—	FPLLIDIV<2:0>		

DEVCFG2: DEVICE CONFIGURATION WORD 2 REGISTER 28-3:

Legend:	r = Reserved bit P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-19 Reserved: Write '1'

bit 15

bit 7

bit 6-4

bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits

- 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 UPLLEN: USB PLL Enable bit⁽¹⁾ 1 = Disable and bypass USB PLL 0 = Enable USB PLL bit 14-11 Reserved: Write '1' bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits⁽¹⁾ 111 = 12x divider 110 = 10x divider 101 = 6x divider100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider000 = 1x divider Reserved: Write '1' FPLLMUL<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier
 - 101 = 20x multiplier
 - 100 = 19x multiplier
 - 011 = 18x multiplier
 - 010 = 17x multiplier
 - 001 = 16x multiplier 000 = 15x multiplier
- bit 3 Reserved: Write '1'

Note 1: This bit is available on PIC32MX2XX/5XX devices only.

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		40 40	MHz MHz	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)
OS12			4	—	10	MHz	XTPLL (Notes 3,4)
OS13			10	—	25	MHz	HS (Note 5)
OS14			10	—	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	_	_	—	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	_	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)		12		mA/V	VDD = 3.3V, TA = +25°C (Note 4)

TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (TcY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

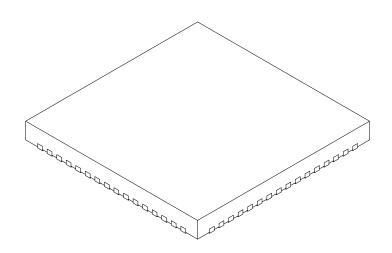
4: This parameter is characterized, but not tested in manufacturing.

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol Characteristics		Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	-	_	ns	_
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	-	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	-	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP35	TscH2doV,	,	—	—	15	ns	VDD > 2.7V
	TscL2doV	SCKx Edge	—	—	20	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	Ν	64			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	Е	9.00 BSC			
Exposed Pad Width	E2	5.30	5.40	5.50	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	5.30 5.40 5.50			
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support