

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256lt-50i-pf

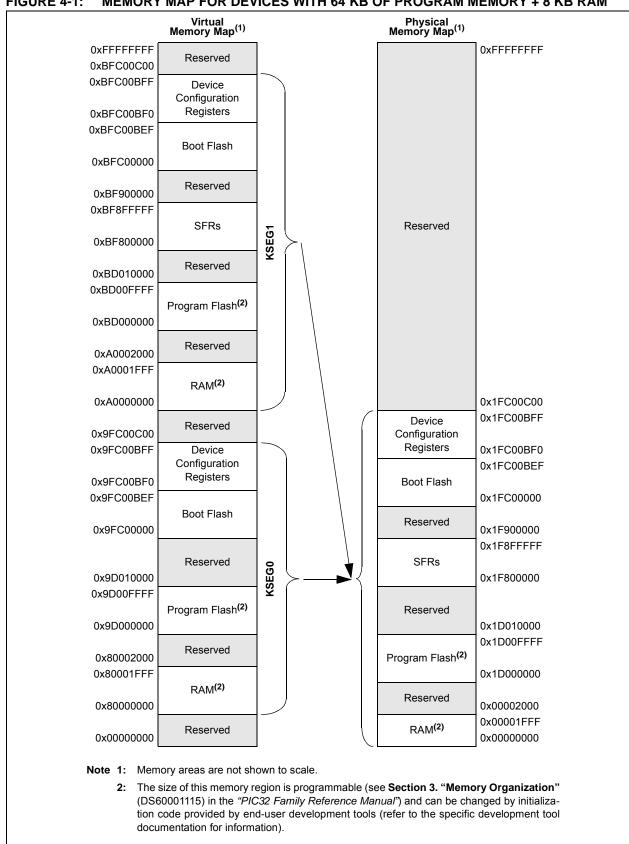
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description				
VUSB3V3 (2)	35	55	Р	—	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.				
VBUSON ⁽²⁾	11	20	0	—	USB Host and OTG bus power control Output				
D+ ⁽²⁾	37	57	I/O	Analog	USB D+				
D-(2)	36	56	I/O	Analog	USB D-				
USBID ⁽²⁾	33	51	Ι	ST	USB OTG ID Detect				
PGED1	16	25	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1				
PGEC1	15	24	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1				
PGED2	18	27	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2				
PGEC2	17	26	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2				
PGED3	13	22	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3				
PGEC3	14	23	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3				
CTED1	_	17	Ι	ST	CTMU External Edge Input 1				
CTED2		38	I	ST	CTMU External Edge Input 2				
CTED3	18	27	I	ST	CTMU External Edge Input 3				
CTED4	22	33	Ι	ST	CTMU External Edge Input 4				
CTED5	29	43	Ι	ST	CTMU External Edge Input 5				
CTED6	30	44	Ι	ST	CTMU External Edge Input 6				
CTED7	_	9	Ι	ST	CTMU External Edge Input 7				
CTED8		92	Ι	ST	CTMU External Edge Input 8				
CTED9		60	Ι	ST	CTMU External Edge Input 9				
CTED10	21	32	Ι	ST	CTMU External Edge Input 10				
CTED11	23	34	Ι	ST	CTMU External Edge Input 11				
CTED12	15	24	Ι	ST	CTMU External Edge Input 12				
CTED13	14	23	Ι	ST	CTMU External Edge Input 13				
C1RX	PPS	PPS	Ι	ST	Enhanced CAN Receive				
C1TX	PPS	PPS	0	ST	Enhanced CAN Transmit				


Legend: CMOS = CMOS compatible input or output

P = Power

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer **Note 1:** This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module. 4: This pin is only available on 100-pin devices without a USB module.

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	_	_	_	—	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	_	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8				BMXDU	DBA<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	BMXDUDBA<7:0>										

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

INCOID IL								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	—		—	_	—	-	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	-	—	—	_			—
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	—	MVEC	—		TPC<2:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 5-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

zogonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 MVEC: Multi Vector Configuration bit

- 1 = Interrupt controller configured for multi vectored mode
- 0 = Interrupt controller configured for single vectored mode
- bit 11 Unimplemented: Read as '0'

bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits

- 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
- 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
- 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
- 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
- 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
- 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
- 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
- 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

9.1 Control Registers

TABLE 9-1: DMA GLOBAL REGISTER MAP

ess										Bit	s								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	DMACON	31:16	_	_	—	_	—	_	—	_	_	_	_	_	_	_	_		0000
3000	DIVIACON	15:0	ON	—	_	SUSPEND	DMABUSY	_	—	_	—	—	—	_	—	_	—	—	0000
2010	DMASTAT	31:16	_	—	_	_		_	—	_	—	—	—	_	—	_	—	—	0000
3010	DIVIASTAT	15:0		-	_	_	—	_	_	—	-	—	_	—	RDWR	C	MACH<2:0	>	0000
2020	DMAADDR	31:16								DMAADD	7~21:05								0000
3020	DIVIAADDR	15:0								DIVIAADD	1.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 9-2: DMA CRC REGISTER MAP

ess		â								В	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCRCCON	31:16	_	_	BYTO	<1:0>	WBO	—	_	BITO	—	—	_	_	_	_	—	_	0000
3030	DURUUUN	15:0	_		—			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP		_	C	RCCH<2:0	>	0000
3040	DCRCDATA	31:16									TA-21:05								0000
3040	DCRODAIA	15:0		DCRCDATA<31:0>															
3050	DCRCXOR	31:16		DCRCXOR<31:0>															
3030	DONOXON	15:0								DOROX	JIX-01.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

				-	-			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				DCRCDAT	4<31:24>			
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				DCRCDAT	4<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				DCRCDAT	A<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				DCRCDA	TA<7:0>			

REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				DCRCXOF	<31:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				DCRCXOF	<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				DCRCXO	R<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				DCRCXO	R<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	—		_							
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	_	_		-							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	_	_		-							
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0				
7.0				_			FRMH<2:0>					

REGISTER 10-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Bit Bit Bit Bit Bit Bit Bit Bit 30/22/14/6 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 Range 31/23/15/7 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ___ ___ ____ ____ ___ _ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 _ ___ ____ ____ ____ ____ ____ ___ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 _ ___ ____ ____ ____ ___ ____ ____ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PID < 3:0 > (1)EP<3:0>

REGISTER 10-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

- 0001 = OUT (TX) token type transaction
- 1001 = IN (RX) token type transaction
- 1101 = SETUP (TX) token type transaction
- Note: All other values are reserved and must not be used.
- bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16	_	—	—	_	—	-			_	—	_		—		—	_	0000
0200	/	15:0	—	—	—	—	—	—	—	_	—	_	—	_	ANSELC3	ANSELC2	ANSELC1	—	000E
6210	TRISC	31:16		—	—	—	_	_	_		_		—	_	_	_	—	_	0000
02.0		15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	_	—	_	—	_	—	—	—	—	F000
6220	PORTC	31:16	—	—	—	—	_	_	_	_	—	_	—	_	—	_	—		0000
0220	1 on to	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	_	—	—	xxxx
6230	LATC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
0200	Ento	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	—	—	_	—	—	xxxx
6240	ODCC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
02.10	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6250	CNPUC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6260	CNPDC	31:16		—	—	—	—	_	_	_	—	—	—		—	_	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	—	—	—	—	_	—	—	0000
6270	CNCONC	31:16				_			_		—	_	—	_	—		—		0000
0270	oncono	15:0	ON		SIDL				_		—	_	—		—		—		0000
6280	CNENC	31:16		—					_		—	_	—		—		—		0000
0200		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	_	_		—		—	_	—		—	_	0000
6200	CNSTATC	31:16	_	—	—	_	_				-	—	-		—		—	—	0000
0290	GNOTAIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_				-	_			_		—	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS										Bi	its								
Virtual Addres (BF80_#)	Register Name	Register Name Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5004	RPG1R	31:16		_			—	_	_		_		—	_		_		—	0000
FC04	RPGIR	15:0	—	—	_	_	_	—	—	—	—	_	_	—		RPG1	<3:0>		0000
5000	DDOOD	31:16	_	—	_	_	_	—	—	—	_	_	_	—	_	_	_	_	0000
FC98	RPG6R	15:0	—	—	_	_	—	—	—	—	_	—	—	—		RPG	6<3:0>		0000
5000	00070	31:16	—	—	_	_	—	—	—	—	_	—	—	—	—	—	_	—	0000
FC9C	RPG7R	15:0	_	—	_	_	_	—	—	_	_	_	_	_		RPG7	/<3:0>		0000
5040	DDOAD	31:16	_	—	_	_	_	—	—	-		_	_	_	_	_	_	_	0000
FCAU	RPG8R	15:0	_	—	_	_	_	—	—			_	—	—		RPG8	3<3:0>	•	0000
5044	DDOOD	31:16	_	—	_	_	_	—	—	_	-	_	_	_	_	_	_	_	0000
FCA4	RPG9R	15:0	—	—	_	_	—	—	—	_	_	—	—	—		RPG9	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	-		_	_	_	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_			_	_	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	—	_	_
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	_	TCKPS	S<1:0>	_	TSYNC	TCS	_

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

011 31-10	Unimplemented: Read as 0
bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode
	0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMR1 register complete
	In Synchronous Timer mode: This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0: 1 = Gated time accumulation is enabled
	0 = Gated time accumulation is enabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value 00 = 1:1 prescale value
bit 3	Unimplemented: Read as '0'
DIL J	ommplemented. Read as 0

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER ('x' = 2 THROUGH 5)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		-	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	-	-	—	—	_	-	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,3)	_	SIDL ⁽⁴⁾	—	—	_	_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾		TCS ⁽³⁾	—

Legend:	
---------	--

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode
- bit 12-8 Unimplemented: Read as '0'
- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

- bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾
 - 111 = 1:256 prescale value
 - 110 = 1:64 prescale value
 - 101 = 1:32 prescale value
 - 100 = 1:16 prescale value
 - 011 = 1:8 prescale value
 - 010 = 1:4 prescale value
 - 001 = 1:2 prescale value
 - 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
31:24	—	—	—	RXBUFELM<4:0>								
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
23:16	—	—	—	TXBUFELM<4:0>								
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0				
15:8		—	—	FRMERR	SPIBUSY		_	SPITUR				
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0				
7:0	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF				

Legend:	C = Clearable bit	HS = Set in hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 **SPITUR:** Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition
 - This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.
- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred
 - This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.
- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 Unimplemented: Read as '0'

$\frac{1}{12} = \frac{1}{12} $									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	_	—	_	_	_	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	_	—	_	—	_	
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	0N ⁽¹⁾	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	
7.0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	

REGISTER 18-1: I2CxCON: $I^2C'x'$ CONTROL REGISTER ('x' = 1 AND 2)

Legend:	HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: I²C Enable bit⁽¹⁾
 - 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I²C module; all I²C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
 - SCLREL: SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

bit 12

0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

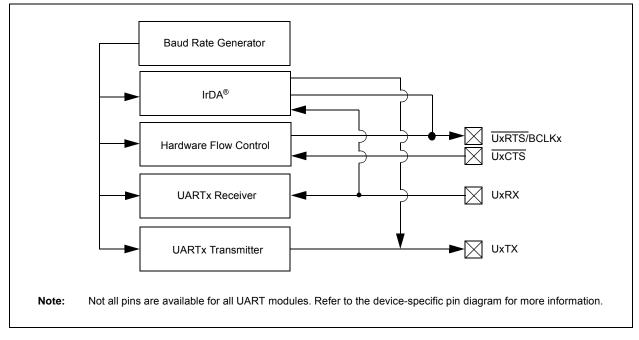
Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 =Strict I²C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX/5XX 64/100-pin family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA[®]. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, odd or no parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

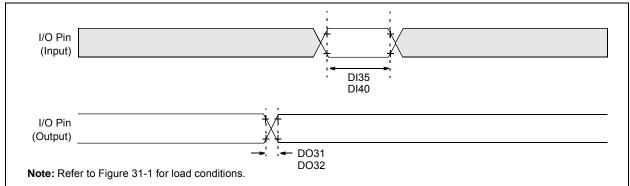

Figure 19-1 illustrates a simplified block diagram of the UART.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

NOTES:

FIGURE 31-3: I/O TIMING CHARACTERISTICS

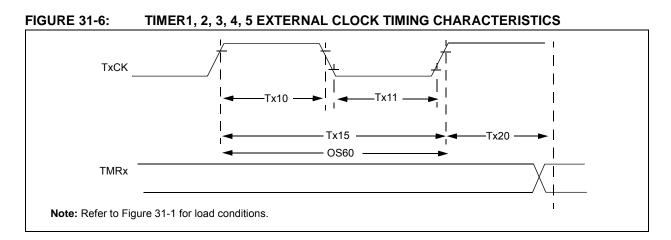


TABLE 31-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Ope (unless other Operating terr	wise state		≤ +85°C fc	or Industria	
Param. No. Symbol Characteris			stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Time			5	15	ns	Vdd < 2.5V
				5	10	ns	Vdd > 2.5V	
DO32	TIOF	Port Output Fall Tim	е	_	5	15	ns	Vdd < 2.5V
					5	10	ns	VDD > 2.5V
DI35	Tinp	INTx Pin High or Lo	10	_	_	ns	_	
DI40	Trbp	CNx High or Low Tir	2	_	_	TSYSCLK		

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 31-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS ⁽¹⁾		(unl	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	· Symbol Characteristics ⁽²⁾				Min.	Typical	Max.	Units	Conditions	
TA10	T⊤xH	TxCK Synchronous High Time with prescale			[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15	
			Asynchronous, with prescaler		10	—	_	ns	—	
TA11	1 TTXL TXCK Synchronous, Low Time With prescaler Asynchronous with prescaler			[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	_	ns	Must also meet parameter TA15		
				10	_	_	ns	—		
TA15	ΤτχΡ	P TxCK Synchronous, Input Period with prescaler			[(Greater of 25 ns or 2 Трв)/N] + 30 ns	-	—	ns	VDD > 2.7V	
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	-	—	ns	VDD < 2.7V	
			Asynchronous, with prescaler		20	-	—	ns	VDD > 2.7V (Note 3)	
					50	-	_	ns	VDD < 2.7V (Note 3)	
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit)			32	—	100	kHz	—	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		K			1	Трв	—	

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31 SP30** SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	RACTERIST	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No.	^{n.} Symbol Characteristics ⁽¹⁾			Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	-	_	ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	-	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	-	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
	TscL2doV	SCKx Edge	—	—	20	ns	VDD < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

АС СНА	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temperature} \end{array}$				
Param. No. Symbol Characteristics				Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—	
	Hold Time	400 kHz mode	600	—	ns			
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	TBF:SDA		100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3		μS	must be free before a new	
			1 MHz mode (Note 1)	0.5	-	μS	transmission can start	
IS50	Св	Bus Capacitive Lo		400	pF	—		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).