

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256lt-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

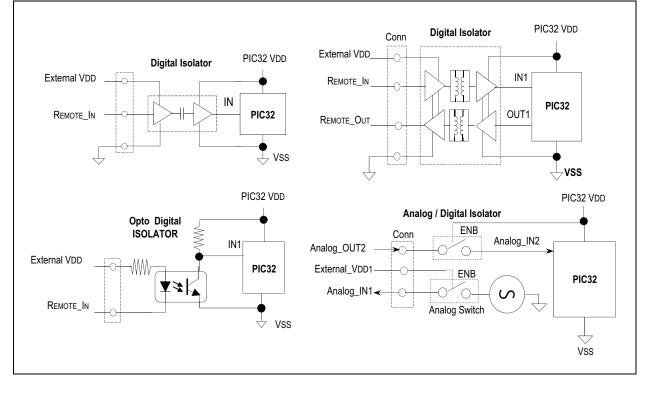
	Pin Number					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description	
VUSB3V3 (2)	35	55	Р	—	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.	
VBUSON ⁽²⁾	11	20	0	—	USB Host and OTG bus power control Output	
D+ ⁽²⁾	37	57	I/O	Analog	USB D+	
D-(2)	36	56	I/O	Analog	USB D-	
USBID ⁽²⁾	33	51	Ι	ST	USB OTG ID Detect	
PGED1	16	25	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1	
PGEC1	15	24	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1	
PGED2	18	27	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2	
PGEC2	17	26	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2	
PGED3	13	22	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3	
PGEC3	14	23	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3	
CTED1	_	17	Ι	ST	CTMU External Edge Input 1	
CTED2		38	I	ST	CTMU External Edge Input 2	
CTED3	18	27	I	ST	CTMU External Edge Input 3	
CTED4	22	33	Ι	ST	CTMU External Edge Input 4	
CTED5	29	43	Ι	ST	CTMU External Edge Input 5	
CTED6	30	44	Ι	ST	CTMU External Edge Input 6	
CTED7	_	9	Ι	ST	CTMU External Edge Input 7	
CTED8		92	Ι	ST	CTMU External Edge Input 8	
CTED9		60	Ι	ST	CTMU External Edge Input 9	
CTED10	21	32	Ι	ST	CTMU External Edge Input 10	
CTED11	23	34	Ι	ST	CTMU External Edge Input 11	
CTED12	15	24	Ι	ST	CTMU External Edge Input 12	
CTED13	14	23	Ι	ST	CTMU External Edge Input 13	
C1RX	PPS	PPS	Ι	ST	Enhanced CAN Receive	
C1TX	PPS	PPS	0	ST	Enhanced CAN Transmit	

Legend: CMOS = CMOS compatible input or output

P = Power

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer **Note 1:** This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.


3: This pin is not available on 64-pin devices with a USB module. 4: This pin is only available on 100-pin devices without a USB module.

Without proper signal isolation, on non-5V tolerant pins, the remote signal can power the PIC32 device through the high side ESD protection diodes. Besides violating the absolute maximum rating specification when VDD of the PIC32 device is restored and ramping up or ramping down, it can also negatively affect the internal Power-on Reset (POR) and Brown-out Reset (BOR) circuits, which can lead to improper initialization of internal PIC32 logic circuits. In these cases, it is recommended to implement digital or analog signal isolation as depicted in Figure 2-6, as appropriate. This is indicative of all industry microcontrollers and not just Microchip products.

TABLE 2-1: EXAMPLES OF DIGITAL/ ANALOG ISOLATORS WITH OPTIONAL LEVEL TRANSLATION

Example Digital/Analog Signal Isolation Circuits	Inductive Coupling	Capacitive Coupling	Opto Coupling	Analog/Digital Switch
ADuM7241 / 40 ARZ (1 Mbps)	Х		_	
ADuM7241 / 40 CRZ (25 Mbps)	Х			_
IS0721		Х		_
LTV-829S (2 Channel)	_		Х	_
LTV-849S (4 Channel)	_		Х	_
FSA266 / NC7WB66	_			Х

FIGURE 2-6: DIGITAL/ANALOG SIGNAL ISOLATION CIRCUITS

INE OID IE	LEGISTER 9-12. DETROSTER DWA CHANNEL & SOURCE SIZE REGISTER							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		CHSSIZ<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHSSIZ	<7:0>			

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—	_	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		CHDSIZ<15:8>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHDSIZ	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

KE0131	CEGISTER 10-1. OTOTGIR. 03B OTO INTERROPT STATUS REGISTER							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—		-	_	-	—
7.0	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	U-0	R/WC-0, HS
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1millisecond, but different from last time
- 0 = USB line state has not been stable for 1 millisecond

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_			—		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_			—			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_			—		_	—
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		—

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 **PPBI:** Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

TABLE 11-2:	OUTPUT PIN SELECTION
-------------	----------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = <u>U3TX</u>
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 - Reserved
RPB5 ⁽⁷⁾	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽³⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽³⁾	RPD14R	RPD14R<3:0>	
RPG1 ⁽³⁾	RPG1R	RPG1R<3:0>	1110 = SDO3
RPA14 ⁽³⁾	RPA14R	RPA14R<3:0>	1111 = SDO4 ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	
RPF0	RPF0R	RPF0R<3:0>	0101 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽⁴⁾	RPF3R	RPF3R<3:0>	1010 = Reserved 1011 = OC4
RPC4 ⁽³⁾	RPC4R	RPC4R<3:0>	1100 = Reserved
RPD15 ⁽³⁾	RPD15R	RPD15R<3:0>	1101 = C3OUT
RPG0 ⁽³⁾	RPG0R	RPG0R<3:0>	1110 = SDO3
RPA15 ⁽³⁾	RPA15R	RPA15R<3:0>	1111 = SDO4 ⁽³⁾

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

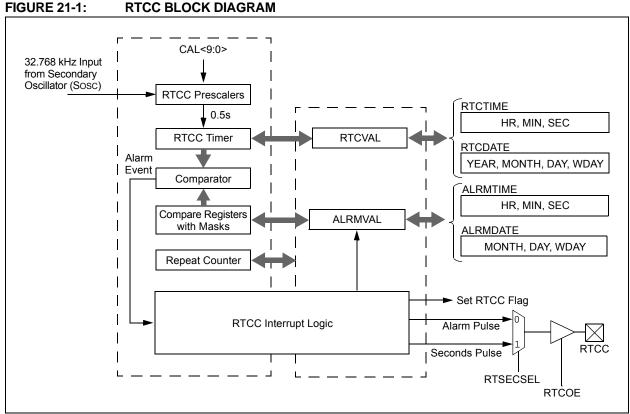
5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

bit 8	ER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED) PTRDEN: Read/Write Strobe Port Enable bit
	1 = PMRD/PMWR port enabled
	0 = PMRD/PMWR port disabled
bit 7-6	CSF<1:0>: Chip Select Function bits ⁽²⁾
	11 = Reserved
	10 = PMCS1 and PMCS2 function as Chip Select
	01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
	00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
bit 5	ALP: Address Latch Polarity bit ⁽²⁾
	 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH)
bit 4	CS2P: Chip Select 0 Polarity bit ⁽²⁾
	1 = Active-high (PMCS2)
	$0 = \text{Active-low}(\overline{\text{PMCS2}})$
bit 3	CS1P: Chip Select 0 Polarity bit ⁽²⁾
	1 = Active-high (PMCS1)
	$0 = \text{Active-low}(\overline{\text{PMCS1}})$
bit 2	Unimplemented: Read as '0'
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Write strobe active-high (PMWR)
	0 = Write strobe active-low (PMWR)
	For Master mode 1 (MODE<1:0> = 11):
	1 = Enable strobe active-high (PMENB)
	0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Read Strobe active-high (PMRD)
	0 = Read Strobe active-low (PMRD)
	For Master mode 1 (MODE<1:0> = 11):
	1 = Read/write strobe active-high (PMRD/PMWR)

- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.


21.0 **REAL-TIME CLOCK AND** CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available the Microchip web from site (www.microchip.com/PIC32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time.

The following are the key features of this module:

- · Time: hours. minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- · Provides calendar: Weekday, date, month and year
- · Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- · User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- · Requirements: External 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

RTCC BLOCK DIAGRAM

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		0								l	Bits								s
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_		—	_						CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	_		—	RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—	_	_	—	_	_		—	_	—	_	_	—	—	—	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0>			ARPT<7:0>						0000		
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>		MIN10<3:0>				MIN01<3:0>			xxxx	
0220	INTO THME	15:0		SEC1	0<3:0>		SEC01<3:0>			_	—	_	_	—	—	—	—	xx00	
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>			MONTH10	<3:0>		MONTH01<3:0>				xxxx
0230	RIODAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	—	_	_		WDAY0	1<3:0>		xx00
0240	ALRMTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>		SEC01<3:0>			_	—	_	_	—	—	—	—	xx00	
0250		ALRMDATE 31:16		—		MONTH10	<3:0>			MONTH	01<3:0>		00xx						
0200					—	—	_	_		WDAY0	1<3:0>		xx0x						

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 23-1: C1CON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13	SIDLE: CAN Stop in Idle bit
	1 = CAN Stops operation when system enters Idle mode0 = CAN continues operation when system enters Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	CANBUSY: CAN Module is Busy bit
	1 = The CAN module is active
	0 = The CAN module is completely disabled
bit 10-5	Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID) 10010 = Compare up to data byte 2 bit 6 with EID17 (C1RXFn<17>)

•

-

00001 = Compare up to data byte 0 bit 7 with EID0 (C1RXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

- bit 10-8 **PRSEG<2:0>:** Propagation Time Segment bits⁽⁴⁾ 111 = Length is $8 \times TQ$ $000 = \text{Length is } 1 \times TQ$ SJW<1:0>: Synchronization Jump Width bits⁽³⁾ bit 7-6 11 = Length is $4 \times TQ$ $10 = \text{Length is } 3 \times TQ$ 01 = Length is 2 x TQ $00 = \text{Length is } 1 \times TQ$ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 111111 = Tq = (2 x 64)/SYSCLK 111110 = TQ = (2 x 63)/SYSCLK • 000001 = TQ = (2 x 2)/SYSCLK $000000 = TQ = (2 \times 1)/SYSCLK$ Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

REGISTE	R 23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Reserved
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 15	FLTEN1: Filter 1 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 12-8	FSEL1<4:0>: FIFO Selection bits
DIL 12-0	11111 = Reserved
	•
	• 10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL0<1:0>: Filter 0 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	• 10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	00000 = Message matching filter is stored in FIFO buffer 0
Netar	The bits in this register can only be medified if the corresponding filter enable (ELTEN) b

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
10.0	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>	_	CREF	_		CCH	<1:0>

REGISTER 24-1: CMxCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

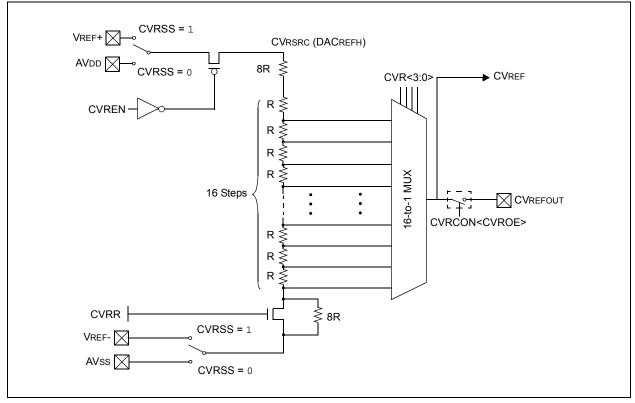
- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

bit 4 **CREF:** Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin

bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.


25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

This data sheet summarizes the features Note: of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

26.1 Control Registers

TABLE 26-1: CTMU REGISTER MAP

ess	Bits											s							
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG25	SEL<3:0>				0000
A200	CINUCON	15:0	ON	-	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM	<5:0>			IRNG	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

29.0 INSTRUCTION SET

The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

TABLE 31-5:	DC CHARACTERISTICS: OPERATING CURRENT (IDD)
-------------	---

DC CHARA	CTERISTICS	5	(unless other	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Parameter No.	Typical ⁽³⁾	Max.	Units Conditions					
Operating (Current (IDD)	(Notes 1, 2, 5)					
DC20	2	8	mA	4 MF	lz (Note 4)			
DC21	7	13	mA	1	0 MHz			
DC22	10	18	mA	20 MI	Hz (Note 4)			
DC23	15	25	mA	30 MHz (Note 4)				
DC24	20	32	mA	40 MHz				
DC25	180	250	μA	+25°C, 3.3V LPRC (31 kHz) (Note 4)				

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

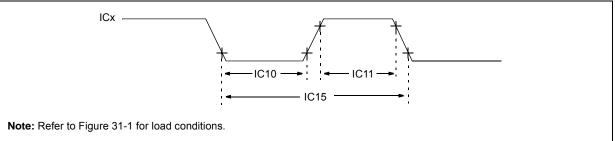

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in the "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

TABLE 31-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH4	ARACTERIS	TICS		(unless	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Cha	racteristic	s ⁽¹⁾	s ⁽¹⁾ Min.			Conditions			
TB10	Т⊤хН	TxCK High Time	Synchron prescaler	ous, with	[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	value (1, 2, 4, 8,		
TB11	ΤτχL	TxCK Low Time	Synchron prescaler	ous, with	[(12.5 ns or 1 TPB)/N] + 25 ns	_	ns	Must also meet parameter TB15	16, 32, 64, 256)		
TB15	ΤτχΡ	TxCK Input	Synchrono prescaler	ous, with	[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V			
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns		ns	VDD < 2.7V			
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increr			—	1	Трв	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

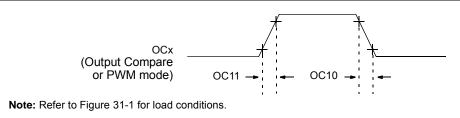
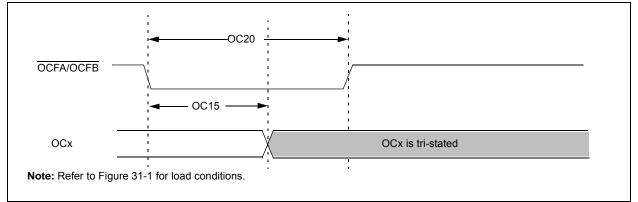


TABLE 31-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Max.	Units	Conditions				
IC10	TccL	ICx Input	Low Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)			
IC11	ТссН	ICx Input	t High Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.				
IC15	TCCP	ICx Input	Period	[(25 ns or 2 Трв)/N] + 50 ns	—	ns	—				

Note 1:	These parameters are	characterized, but not	t tested in manufacturing.

FIGURE 31-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 31-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter DO32		
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See parameter DO31		

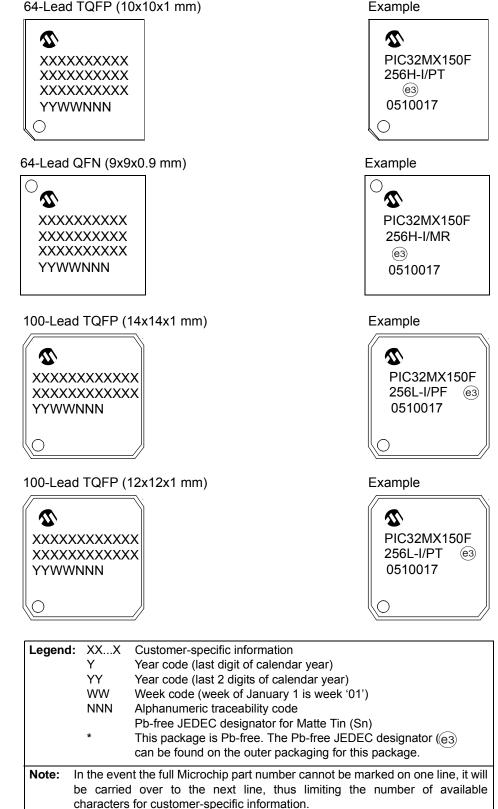
Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 31-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions		
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	_		
OC20	TFLT	Fault Input Pulse Width	50	—		ns	—		


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

34.0 **PACKAGING INFORMATION**

34.1 **Package Marking Information**

64-Lead TQFP (10x10x1 mm)

