Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 40MHz | | Connectivity | CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | Peripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | Number of I/O | 81 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 32K x 8 | | /oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 48x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx550f256lt-v-pt | # FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION Note 1: If the USB module is not used, this pin must be connected to VDD. 2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA. Where: $$f=\frac{FCNV}{2} \qquad \text{(i.e., ADC conversion rate/2)}$$ $$f=\frac{1}{(2\pi\sqrt{LC})}$$ $$L=\left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$ Aluminum or electrolytic capacitors should not be used. ESR ≤ 3Ω from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS). ### 2.2.1 BULK CAPACITORS The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μ F to 47 μ F. This capacitor should be located as close to the device as possible. # 2.3 Capacitor on Internal Voltage Regulator (VCAP) ### 2.3.1 INTERNAL REGULATOR MODE A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "40 MHz Electrical Characteristics"** for additional information on CEFC specifications. ## 2.4 Master Clear (MCLR) Pin The MCLR pin provides two specific device functions: - · Device Reset - · Device programming and debugging Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations. Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. # FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS - Note 1: $\frac{470\Omega \leq R1 \leq 1\Omega}{MCLR} \text{ from the external capacitor C, in the event of } \frac{MCLR}{MCLR} \text{ pin breakdown, due to Electrostatic Discharge} \\ \frac{(ESD)}{MCLR} \text{ pin VIH} \text{ and VIL specifications are met without interfering with the Debug/Programmer tools.}$ - 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR. - No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins. ### REGISTER 5-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 31.24 | _ | _ | _ | | IP3<2:0> | | IS3< | :1:0> | | 22:16 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 23:16 | _ | _ | _ | | IP2<2:0> | | IS2< | :1:0> | | 15.0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | _ | _ | _ | IP1<2:0> | | | IS1< | :1:0> | | 7:0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7:0 | | _ | _ | | IP0<2:0> | | IS0< | 1:0> | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-29 Unimplemented: Read as '0' bit 28-26 IP3<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 25-24 IS3<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 bit 23-21 Unimplemented: Read as '0' bit 20-18 IP2<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 . 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 17-16 IS2<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 bit 15-13 Unimplemented: Read as '0' bit 12-10 IP1<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 • . 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled **Note:** This register represents a generic definition of the IPCx register. Refer to Table 5-1 for the exact bit definitions. TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED) | SS | | _ | | | | | | | | Bi | ts | - | | | | | | | | |-----------------------------|---------------------------------|---------------|-------------|-------|-------|------------|---------|-------|------|-------------|----------------------|------------|--------|--------------|------------|---------|---------|--------------|--------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 3170 | DCH1SSIZ | 31:16 | _ | _ | _ | _ | _ | | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | 0000 | | 3170 | DOITIOGIZ | 15:0 | | | | | | | | CHSSIZ | '<15:0> | | | | | | | | 0000 | | 3180 | DCH1DSIZ | 31:16 | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0100 | | 15:0 | 1 | | | | | | I | CHDSIZ | 2 <15:0> | | | | | | | 1 | 0000 | | 3190 | DCH1SPTR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0.00 | | 15:0 | | | | | | | 1 | CHSPTF | R<15:0> | | | | | 1 | | ı | 0000 | | 31A0 | DCH1DPTR | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | 0000 | | | | 15:0 | | | | | | | | CHDPT | R<15:0> | | | | | | | 1 | 0000 | | 31B0 | DCH1CSIZ | 31:16 | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | 0000 | | | | 15:0 | | | | | | | | CHCSIZ | 2<15:0> | | | | | | | | 0000 | | 31C0 | DCH1CPTR | 31:16 | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | 0000 | | | | 15:0 | | | | | | | | CHCPTF | | | | | | | | | 0000 | | 31D0 | DCH1DAT | 31:16 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | —
OUIDD 4 | —
T-70: | _ | _ | _ | 0000 | | | | 15:0 | _ | | _ | | | | _ | _ | | | | CHPDA | 1<7:0> | | | | 0000 | | 31E0 | DCH2CON | 31:16
15:0 | —
CHBUSY | | _ | | | | _ | —
CHCHNS | —
CHEN | —
CHAED | CHCHN | CHAEN | | CHEDET | - CLIDE | —
!I<1:0> | 0000 | | | | 31:16 | — | | | | | | _ | — | CHEN | CHAED | СПСПІ | CHAIR | | CHEDET | СПРК | 1<1.0> | 0000
00FF | | 31F0 | DCH2ECON | 15:0 | _ | | _ | —
CHSIR | | _ | _ | _ | CFORCE | CABORT | PATEN | SIRQEN | AIRQEN | _ | _ | | FFF8 | | | | 31:16 | _ | | | - | Q \1.0> | | | _ | CHSDIE | CHSHIE | CHDDIE | CHDHIE | CHBCIE | CHCCIE | CHTAIE | CHERIE | 0000 | | 3200 | DCH2INT | 15:0 | | | | | | | | _ | CHSDIF | CHSHIF | CHDDIF | CHDHIF | CHBCIE | CHCCIF | CHTAIF | CHERIF | 0000 | | | | 31:16 | | | | | | | | | | 01101111 | OHBBII | OHBIIII | OHBOH | 0110011 | OTTIVAL | OTILITAI | 0000 | | 3210 | DCH2SSA | 15:0 | | | | | | | | CHSSA | <31:0> | | | | | | | | 0000 | | | | 31:16 | | | | | | | | | | | | | | | | | 0000 | | 3220 | DCH2DSA | 15:0 | | | | | | | | CHDSA | <31:0> | | | | | | | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3230 | DCH2SSIZ | 15:0 | | | | | | | | CHSSIZ | '<15:0> | | | | | | | | 0000 | | 20.45 | D 01 10 D 0: - | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3240 | DCH2DSIZ | 15:0 | | | | | | | | CHDSIZ | ː<15:0> | | | | | | | | 0000 | | 0050 | DOLLOODED | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3250 | DCH2SPTR | 15:0 | | | | | | | | CHSPTE | R<15:0> | | | | | | | | 0000 | | 2260 | DCLINDDID | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3200 | DCH2DPTR | 15:0 | | | | | | | | CHDPT | R<15:0> | | |
 | | | | 0000 | | 3270 | DCH2CS17 | 31:16 | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | | _ | _ | _ | 0000 | | 3210 | DCH2CSIZ | 15:0 | | | | | | | | CHCSIZ | 2 <15:0> | | | | | | | | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. ### REGISTER 10-16: U1SOF: USB SOF THRESHOLD REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | - | _ | - | - | - | - | - | - | | 23:16 | U-0 | 23.10 | - | _ | - | - | - | - | _ | _ | | 15:8 | U-0 | 15.6 | _ | _ | _ | _ | _ | _ | _ | _ | | 7:0 | R/W-0 | 7:0 | | | | CNT | <7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-0 CNT<7:0>: SOF Threshold Value bits Typical values of the threshold are: 01001010 = **64-byte** packet 00101010 = 32-byte packet 00011010 =16-byte packet 00010010 =8-byte packet ## REGISTER 10-17: U1BDTP1: USB BDT PAGE 1 REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--| | 31:24 | U-0 | | 31.24 | - | _ | | | - | _ | - | _ | | | 23:16 | U-0 | | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | | 15:8 | U-0 | | 15.6 | - | _ | - | - | - | _ | - | _ | | | 7:0 | R/W-0 U-0 | | | 7.0 | BDTPTRL<15:9> | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-1 BDTPTRL<15:9>: BDT Base Address bits This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory. The 32-bit BDT base address is 512-byte aligned. bit 0 **Unimplemented:** Read as '0' TABLE 11-2: OUTPUT PIN SELECTION (CONTINUED) | RPn Port Pin | RPnR SFR | RPnR bits | RPnR Value to Peripheral
Selection | |----------------------|----------|-------------|--| | RPD9 | RPD9R | RPD9R<3:0> | 0000 = No Connect | | RPG6 | RPG6R | RPG6R<3:0> | 0001 = U3RTS | | RPB8 | RPB8R | RPB8R<3:0> | 0010 = U4TX | | RPB15 | RPB15R | RPB15R<3:0> | 0011 = REFCLKO
0100 = U5TX ⁽³⁾ | | RPD4 | RPD4R | RPD4R<3:0> | 0101 = Reserved | | RPB0 | RPB0R | RPB0R<3:0> | 0110 = Reserved | | RPE3 | RPE3R | RPE3R<3:0> | 0111 = SS1 | | RPB7 | RPB7R | RPB7R<3:0> | 1000 = SDO1 | | RPB2 | RPB2R | RPB2R<3:0> | 1001 = Reserved | | RPF12 ⁽³⁾ | RPF12R | RPF12R<3:0> | 1010 = Reserved | | RPD12 ⁽³⁾ | RPD12R | RPD12R<3:0> | 1011 = OC5
1100 = Reserved | | RPF8 ⁽³⁾ | RPF8R | RPF8R<3:0> | 1101 = C1OUT | | RPC3 ⁽³⁾ | RPC3R | RPC3R<3:0> | 1110 = SS3 | | RPE9 ⁽³⁾ | RPE9R | RPE9R<3:0> | 1111 = SS4 ⁽³⁾ | | RPD1 | RPD1R | RPD1R<3:0> | 0000 = <u>No Con</u> nect | | RPG9 | RPG9R | RPG9R<3:0> | 0001 = <u>U2RTS</u> | | RPB14 | RPB14R | RPB14R<3:0> | 0010 = Reserved
0011 = U1RTS | | RPD0 | RPD0R | RPD0R<3:0> | 0100 = U5TX ⁽³⁾ | | RPD8 | RPD8R | RPD8R<3:0> | 0101 = Reserved | | RPB6 | RPB6R | RPB6R<3:0> | 0110 = SS2 | | RPD5 | RPD5R | RPD5R<3:0> | 0111 = Reserved
1000 = SDO1 | | RPF3 ⁽¹⁾ | RPF3R | RPF3R<3:0> | 1001 = Reserved | | RPF6 ⁽²⁾ | RPF6R | RPF6R<3:0> | 1010 = Reserved | | RPF13 ⁽³⁾ | RPF13R | RPF13R<3:0> | 1011 = OC2 | | RPC2 ⁽³⁾ | RPC2R | RPC2R<3:0> | 1100 = OC1
1101 = Reserved | | RPE8 ⁽³⁾ | RPE8R | RPE8R<3:0> | 1110 = Reserved | | RPF2 ⁽¹⁾ | + | | 1111 = Reserved | Note 1: This selection is not available on 64-pin USB devices. - 2: This selection is only available on 100-pin General Purpose devices. - 3: This selection is not available on 64-pin devices. - 4: This selection is not available when USBID functionality is used on USB devices. - 5: This selection is not available on devices without a CAN module. - 6: This selection is not available on USB devices. - 7: This selection is not available when VBUSON functionality is used on USB devices. TABLE 11-11: PORTF REGISTER MAP FOR PIC32MX130F128L, PIC32MX150F256L, AND PIC32MX170F512L DEVICES ONLY | ess | | | Bits | | | | | | | | | | | | | | | | | |-----------------------------|---------------------------------|-----------|-------|-------|---------------|---------------|-------|-------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All
Resets | | 6500 | ANSELF | 31:16 | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0300 | ANOLLI | 15:0 | _ | | ANSELE13 | ANSELE12 | _ | _ | | ANSELE8 | | _ | _ | _ | _ | ANSELE2 | ANSELE1 | ANSELE0 | 3107 | | 6510 | TRISF | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0010 | | 15:0 | _ | _ | TRISF13 | TRISF12 | _ | _ | _ | TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 31FF | | 6520 | PORTF | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0020 | TOITH | 15:0 | _ | _ | RF13 | RF12 | _ | _ | _ | RF8 | RF7 | RF6 | RF5 | RF4 | RF3 | RF2 | RF1 | RF0 | xxxx | | 6530 | LATF | 31:16 | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0000 | D(II) | 15:0 | _ | | LATF13 | LATF12 | _ | _ | _ | LATF8 | LATF7 | LATF6 | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATF0 | xxxx | | 6540 | ODCF | 31:16 | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 00+0 | ODOI | 15:0 | _ | _ | ODCF13 | ODCF12 | _ | _ | - | ODCF8 | ODCF7 | ODCF6 | ODCF5 | ODCF4 | ODCF3 | ODCF2 | ODCF1 | ODCF0 | 0000 | | 6550 | CNPUF | 31:16 | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0000 | | 0000 | CIVI OI | 15:0 | _ | _ | CNPUF13 | CNPUF12 | _ | _ | - | CNPUF8 | CNPUF7 | CNPUF6 | CNPUF5 | CNPUF4 | CNPDF3 | CNPUF2 | CNPUF1 | CNPUF0 | 0000 | | 6560 | CNPDF | 31:16 | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0000 | | 0300 | CIVI DI | 15:0 | _ | _ | CNPDF13 | CNPDF12 | _ | _ | - | CNPDF8 | CNPDF7 | CNPDF6 | CNPDF5 | CNPDF4 | CNPDF3 | CNPDF2 | CNPDF1 | CNPDF0 | 0000 | | 6570 | CNCONF | 31:16 | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0000 | | 0370 | CINCOIN | 15:0 | ON | _ | SIDL | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0000 | | 6580 | CNENF | 31:16 | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0000 | | 0300 | CINCINI | 15:0 | _ | _ | CNIEF13 | CNIEF12 | _ | 1 | - | CNIEF8 | CNIEF7 | CNIEF6 | CNIEF5 | CNIEF4 | CNIEF3 | CNIEF2 | CNIEF1 | CNIEF0 | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | 1 | - | - | _ | _ | 1 | - | _ | _ | 1 | _ | 0000 | | 6590 | CNSTATF | 15:0 | _ | _ | CN
STATF13 | CN
STATF12 | _ | _ | - | CN
STATF8 | CN
STATF7 | CN
STATF6 | CN
STATF5 | CN
STATF4 | CN
STATF3 | CN
STATF2 | CN
STATF1 | CN
STATF0 | 0000 | Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP | SS | | | Bits | | | | | | | | | | | | | | | | | |-----------------------------|------------------|---------------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|--------|------------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FB38 | RPA14R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ | 0000 | | 1 000 | 1(17(14)(| 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA14 | 1<3:0> | | 0000 | | FB3C | RPA15R | 31:16 | _ | | _ | _ | | _ | _ | | | | _ | _ | _ | _ | _ | _ | 0000 | | . 500 | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA1 | 5<3:0> | | 0000 | | FB40 | RPB0R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB0 | <3:0> | | 0000 | | FB44 | RPB1R | 31:16 | | _ | _ | _ | | _ | _ | | | | _ | _ | _ | | | | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | RPB1 | <3:0> | | 0000 | | FB48 | RPB2R | 31:16 | | | | | | | _ | | | | | _ | _ | _ | _ | | 0000 | | | | 15:0 | | | _ | | _ | _ | | _ | | | _ | | | RPB2 | <3:0> | | 0000 | | FB4C | RPB3R | 31:16 | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | 0000 | | | | 15:0
31:16 | _ | | | _ | _ | _ | _ | _ | _ | | _ | _ | | RPB3 | <3:0> | | 0000 | | FB54 | RPB5R | | _ | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | RPB5 | | | 0000 | | | | 15:0
31:16 | | | _ | | _ | | _ | | | | _ | | | — RPB0 | | | 0000 | | FB58 | RPB6R | 15:0 | _ | | | _ | | | _ | _ | | | | _ | | RPB6 | -
<3:0> | | 0000 | | | | 31:16 | |
| | | | | | | | | | | _ | _ | _ | _ | 0000 | | FB5C | RPB7R | 15:0 | | | | | | | | | | | | | _ | RPB7 | | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB60 | RPB8R | 15:0 | _ | _ | _ | _ | _ | _ | _ | | | | _ | _ | | RPB8 | | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | | | | _ | _ | _ | - | _ | | 0000 | | FB64 | RPB9R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | RPB9 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB68 | RPB10R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | RPB10 |)<3:0> | | 0000 | | | DDD 4 4 D | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB78 | RPB14R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB1 | 1<3:0> | | 0000 | | ED76 | DDD45D | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB7C | RPB15R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB1 | 5<3:0> | | 0000 | | ED04 | DDC4D | 31:16 | _ | _ | _ | _ | - | _ | _ | _ | _ | | _ | _ | - | _ | _ | _ | 0000 | | FB84 | RPC1R | 15:0 | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | | RPC1 | <3:0> | | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability. # REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER (CONTINUED)('x' = 2 THROUGH 5) bit 3 T32: 32-Bit Timer Mode Select bit⁽²⁾ 1 = Odd numbered and even numbered timers form a 32-bit timer 0 = Odd numbered and even numbered timers form a separate 16-bit timer bit 2 Unimplemented: Read as '0' bit 1 TCS: Timer Clock Source Select bit⁽³⁾ 1 = External clock from TxCK pin 0 = Internal peripheral clock bit 0 Unimplemented: Read as '0' - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 2: This bit is available only on even numbered timers (Timer2 and Timer4). - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers. - **4:** While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode. ## REGISTER 18-1: $12CxCON: 1^2C'x' CONTROL REGISTER ('x' = 1 AND 2)$ | | | | | | , | | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | 04.04 | U-0 | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | 22.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | R/W-1, HC | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDL | SCLREL | STRICT | A10M | DISSLW | SMEN | | 7.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0, HC | | 7:0 | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | **Legend:** HC = Cleared in Hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 ON: I²C Enable bit⁽¹⁾ 1 = Enables the I²C module and configures the SDA and SCL pins as serial port pins $0 = \text{Disables the } 1^2\text{C module}$; all $1^2\text{C pins are controlled by PORT functions}$ bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 **SCLREL:** SCLx Release Control bit (when operating as I²C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) ## If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. ### If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission. - bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space. - 0 = Strict I²C Reserved Address Rule not enabled - bit 10 A10M: 10-bit Slave Address bit - 1 = I2CxADD is a 10-bit slave address - 0 = I2CxADD is a 7-bit slave address - bit 9 DISSLW: Disable Slew Rate Control bit - 1 = Slew rate control disabled - 0 = Slew rate control enabled - bit 8 SMEN: SMBus Input Levels bit - 1 = Enable I/O pin thresholds compliant with SMBus specification - 0 = Disable SMBus input thresholds - **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. ### REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|---------------------|--------------------|---------------------|---------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | | _ | _ | | 22:46 | R/W-0, HC | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | | 23:16 | RDSTART | _ | _ | _ | _ | _ | DUALBUF | _ | | 15:0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDL | ADRMU | JX<1:0> | PMPTTL | PTWREN | PTRDEN | | 7:0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | 7:0 | CSF< | 1:0> ⁽²⁾ | ALP ⁽²⁾ | CS2P ⁽²⁾ | CS1P ⁽²⁾ | | WRSP | RDSP | Legend:HC = Hardware clearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown bit 31-24 Unimplemented: Read as '0' bit 23 RDSTART: Start a Read on the PMP Bus bit (3) 1 = Start a read cycle on the PMP bus 0 = No effect This bit is cleared by hardware at the end of the read cycle when the BUSY bit (PMMODE<15>) = 0. bit 22-18 Unimplemented: Read as '0' bit 17 **DUALBUF:** Parallel Master Port Dual Read/Write Buffer Enable bit This bit is only valid in Master mode. 1 = PMP uses separate registers for reads and writes Reads: PMRADDR and PMRDIN Writes: PMRWADDR and PMDOUT 0 = PMP uses legacy registers for reads and writes Reads/Writes: PMADDR and PMRDIN bit 16 Unimplemented: Read as '0' bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾ 1 = PMP enabled 0 = PMP disabled, no off-chip access performed bit 14 **Unimplemented:** Read as '0' bit 13 **SIDL:** Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8> 00 = Address and data appear on separate pins bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffer bit 9 **PTWREN:** Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit. 2: These bits have no effect when their corresponding pins are used as address lines. ## 21.1 Control Registers ## TABLE 21-1: RTCC REGISTER MAP | ess | | | | | | | | | | | Bits | | | | | | | | | |-----------------------------|---------------------------------|-----------|--------|-------|---------|----------|------------|-------|--------|--------------|-----------|----------|--------|--------------|---------|---------|---------|-------|------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 0200 | DTCCON | 31:16 | _ | _ | _ | _ | _ | _ | | | | | CAL< | 9:0> | | | | | 0000 | | 0200 | RTCCON | 15:0 | ON | _ | SIDL | _ | _ | RTSEC | | | | RTCCLKON | _ | _ | RTCWREN | RTCSYNC | HALFSEC | RTCOE | 0000 | | 0210 | RTCALRM | 31:16 | _ | _ | _ | _ | | | | | | _ | 0000 | | | | | | | | 0210 | KTOALKW | 15:0 | ALRMEN | CHIME | PIV | ALRMSYNC | | AMAS | K<3:0> | | ARPT<7:0> | | | | | | 0000 | | | | 0220 | RTCTIME | 31:16 | | HR1 | 0<3:0> | | | HR01 | <3:0> | | | MIN10< | 3:0> | | | MIN01 | <3:0> | | xxxx | | 0220 | KICIIWL | 15:0 | | SEC1 | 0<3:0> | | | SEC0 | 1<3:0> | | | _ | _ | _ | _ | _ | _ | _ | xx00 | | 0230 | RTCDATE | 31:16 | | YEAR | 10<3:0> | | | YEARO | 1<3:0> | | | MONTH10 |)<3:0> | | | MONTH | 01<3:0> | | xxxx | | 0230 | KICDAIE | 15:0 | | DAY1 | 0<3:0> | | | DAY0 | 1<3:0> | | _ | _ | _ | _ | | WDAY0 | 1<3:0> | | xx00 | | 0240 | ALRMTIME | 31:16 | | HR1 | 0<3:0> | | | HR01 | <3:0> | | | MIN10< | 3:0> | | | MIN01 | <3:0> | | xxxx | | 0240 | ALKIVITIVIE | 15:0 | | SEC1 | 0<3:0> | | | SEC0 | 1<3:0> | | _ | _ | _ | _ | _ | _ | _ | _ | xx00 | | 0250 | ALRMDATE | 31:16 | _ | _ | _ | _ | | | | MONTH10<3:0> | | | | MONTH01<3:0> | | | | 00xx | | | 0250 | ALKIVIDAIE | 15:0 | | DAY1 | 0<3:0> | | DAY01<3:0> | | | _ | _ | _ | _ | | WDAY0 | 1<3:0> | | xx0x | | .egend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown
in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY #### RTCTIME: RTC TIME VALUE REGISTER REGISTER 21-3: | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | R/W-x | 31:24 | | HR10 | <3:0> | | | HR01 | <3:0> | | | 22.40 | R/W-x | 23:16 | | MIN10 | <3:0> | | | MIN01 | <3:0> | | | 45.0 | R/W-x | 15:8 | SEC10<3 | | <3:0> | | | SEC01 | <3:0> | | | 7.0 | U-0 | 7:0 | _ | _ | _ | _ | _ | | | _ | ### Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2 bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9 bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5 bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9 bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9 bit 7-0 Note: This register is only writable when RTCWREN = 1 (RTCCON<3>). Unimplemented: Read as '0' #### **REGISTER 22-2:** AD1CON2: ADC CONTROL REGISTER 2 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | _ | _ | _ | | 22:16 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | | 13.6 | | VCFG<2:0> | | OFFCAL | _ | CSCNA | _ | _ | | 7:0 | R-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7.0 | BUFS | | | SMP | I<3:0> | | BUFM | ALTS | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits | | VREFH | VREFL | |-----|--------------------|--------------------| | 000 | AVDD | AVss | | 001 | External VREF+ pin | AVss | | 010 | AVDD | External VREF- pin | | 011 | External VREF+ pin | External VREF- pin | | 1xx | AVdd | AVss | bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit 1 = Enable Offset Calibration mode Positive and negative inputs of the sample and hold amplifier are connected to VREFL 0 = Disable Offset Calibration mode The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL bit 11 Unimplemented: Read as '0' bit 10 **CSCNA:** Input Scan Select bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 Unimplemented: Read as '0' bit 7 BUFS: Buffer Fill Status bit Only valid when BUFM = 1. 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF bit 6 Unimplemented: Read as '0' bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence bit 1 BUFM: ADC Result Buffer Mode Select bit 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0 bit 0 **ALTS:** Alternate Input Sample Mode Select bit > 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples 0 = Always use Sample A input multiplexer settings ### REGISTER 23-1: C1CON: CAN MODULE CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|------------------| | 31:24 | U-0 | U-0 | U-0 | U-0 | S/HC-0 | R/W-1 | R/W-0 | R/W-0 | | 31.24 | _ | _ | _ | _ | ABAT REQOP<2 | | | > | | 23:16 | R-1 | R-0 | R-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | | 23.10 | C | DPMOD<2:0> | ı | CANCAP | _ | _ | 0/2 25/17/9/1 24/16 R/W-0 R/W REQOP<2:0> U-0 U-1 U-0 U-1 U-0 U-1 | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | U-0 | R-0 | U-0 | U-0 | U-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDLE | _ | CANBUSY | _ | _ | _ | | 7:0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7.0 | _ | _ | _ | | | | | | Legend:HC = Hardware ClearS = Settable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown bit 31-28 Unimplemented: Read as '0' bit 27 ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions aborted bit 26-24 **REQOP<2:0>:** Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Set Configuration mode 011 = Set Listen Only mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode bit 23-21 OPMOD<2:0>: Operation Mode Status bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit 1 = CANTMR value is stored on valid message reception and is stored with the message 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power bit 19-16 Unimplemented: Read as '0' bit 15 **ON:** CAN On bit⁽¹⁾ 1 = CAN module is enabled 0 = CAN module is disabled bit 14 Unimplemented: Read as '0' **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored. ### REGISTER 23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED) ``` bit 20-16 FSEL2<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN1: Filter 1 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL1<1:0>: Filter 1 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL1<4:0>: FIFO Selection bits bit 12-8 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN0: Filter 0 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL0<1:0>: Filter 0 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL0<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 ``` Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. ### 30.6 MPLAB X SIM Software Simulator The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. # 30.7 MPLAB REAL ICE In-Circuit Emulator System The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE. The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential
Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables. # 30.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE. The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. ## 30.9 PICkit 3 In-Circuit Debugger/ Programmer The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™). ### **30.10 MPLAB PM3 Device Programmer** The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications. **TABLE 31-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS** | DC CHA | RACTERIS | STICS | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +105^{\circ}\text{C}$ for V-temp | | | | | | |---------------|-----------------|--|--|------|--------------------|-------|--|--| | Param.
No. | Symbol | Characteristics | Min. | Тур. | Max. | Units | Comments | | | D312 | TSET | Internal 4-bit DAC
Comparator Reference
Settling time. | _ | _ | 10 | μs | See Note 1 | | | D313 | DACREFH | CVREF Input Voltage | AVss | _ | AVDD | V | CVRSRC with CVRSS = 0 | | | | Reference Range | Reference Range | VREF- | _ | VREF+ | V | CVRSRC with CVRSS = 1 | | | D314 | DVREF | CVREF Programmable Output Range | 0 | _ | 0.625 x
DACREFH | V | 0 to 0.625 DACREFH with DACREFH/24 step size | | | | | | 0.25 x
DACREFH | _ | 0.719 x
DACREFH | V | 0.25 x DACREFH to 0.719
DACREFH with DACREFH/
32 step size | | | D315 | DACRES | Resolution | _ | _ | DACREFH/24 | | CVRCON <cvrr> = 1</cvrr> | | | | | | _ | _ | DACREFH/32 | | CVRCON <cvrr> = 0</cvrr> | | | D316 | DACACC | ACC Absolute Accuracy ⁽²⁾ | _ | _ | 1/4 | LSB | DACREFH/24,
CVRCON <cvrr> = 1</cvrr> | | | | | | _ | _ | 1/2 | LSB | DACREFH/32,
CVRCON <cvrr> = 0</cvrr> | | **Note 1:** Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing. ### **TABLE 31-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS** | DC CHA | RACTERIS | STICS | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industria $-40^{\circ}\text{C} \leq \text{TA} \leq +105^{\circ}\text{C}$ for V-temp | | | Ta ≤ +85°C for Industrial | | |---------------|----------|---------------------------------|---|---------|------|---------------------------|---| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Comments | | D321 | CEFC | External Filter Capacitor Value | 8 | 10 | _ | μF | Capacitor must be low series resistance (≤ 3 ohm). Typical voltage on the VCAP pin is 1.8V. | ^{2:} These parameters are characterized but not tested. # 31.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters. FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS | AC CHARACTERISTICS | | | (unles | s otherwise | e stated
ature - | i)
-40°C ≤ | : 2.3V to 3.6V TA ≤ +85°C for Industrial TA ≤ +105°C for V-temp | | | |--------------------|--------|-----------------------|---|-------------|---------------------|----------------------|--|--|--| | Param.
No. | Symbol | Characteristics | Min. Typical ⁽¹⁾ Max. Units Conditions | | | | | | | | DO50 | Cosco | OSC2 pin | _ | _ | 15 | | In XT and HS modes when an external crystal is used to drive OSC1 | | | | DO50a | Csosc | SOSCI/SOSCO pins | _ | 33 | _ | pF | Epson P/N: MC-306 32.7680K-
A0:ROHS | | | | DO56 | Сю | All I/O pins and OSC2 | 50 pF EC mode | | | | | | | | DO58 | Св | SCLx, SDAx | _ | _ | 400 | pF | In I ² C mode | | | **Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. ### FIGURE 31-2: EXTERNAL CLOCK TIMING # 32.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX1XX/2XX/5XX 64/100-pin AC characteristics and timing parameters. ### TABLE 32-5: EXTERNAL CLOCK TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial | | | | | | |--------------------|--------|--|--|---------|----------|-------|-------------------------------|--| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | | MOS10 | Fosc | External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes) | DC
4 | _ | 50
50 | | EC (Note 2)
ECPLL (Note 1) | | Note 1: PLL input requirements: 4 MHz ≤ FPLLIN ≤ 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing. ### TABLE 32-6: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial | | | | | |--------------------|--------|----------------------------------|--|---|---|----|---| | Param.
No. | Symbol | Characteristics | Min. Typical Max. Units Conditions | | | | | | MSP10 | TscL | SCKx Output Low Time (Note 1,2) | Tsck/2 | | _ | ns | ı | | MSP11 | TscH | SCKx Output High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | Note 1: These parameters are characterized, but not tested in manufacturing. ### TABLE 32-7: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | (unless | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial | | | | | | |--------------------|--------|----------------------------------|---------------------------------|--|---|----|---|--|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. Typ. Max. Units Conditions | | | | | | | | MSP10 | TscL | SCKx Output Low Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | | | MSP11 | TscH | SCKx Output High Time (Note 1,2) | Tsck/2 | _ | _ | ns | _ | | | **Note 1:** These parameters are characterized, but not tested in manufacturing. ^{2:} This parameter is characterized, but not tested in manufacturing. ^{2:} The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. ^{2:} The minimum
clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. ## **INDEX** | A | | CTMU | | |---|----------|--|----------| | AC Characteristics | 321, 356 | Registers | | | 10-Bit Conversion Rate Parameters | 343 | Customer Change Notification Service | | | ADC Specifications | 341 | Customer Notification Service | | | Analog-to-Digital Conversion Requirements | 344 | Customer Support | 37 | | EJTAG Timing Requirements | | D | | | Internal FRC Accuracy | | _ | | | Internal RC Accuracy | 323 | DC and AC Characteristics | 0.54 | | OTG Electrical Specifications | | Graphs and Tables | | | Parallel Master Port Read Requirements | | DC Characteristics | | | Parallel Master Port Write | | I/O Pin Input Specifications | | | Parallel Master Port Write Requirements | 350 | I/O Pin Output Specifications | | | Parallel Slave Port Requirements | | Idle Current (IIDLE) | | | PLL Clock Timing | | Power-Down Current (IPD) | | | Analog-to-Digital Converter (ADC) | | Program Memory | | | _ | | Temperature and Voltage Specifications | | | В | | DC Characteristics (50 MHz) | | | Block Diagrams | | Idle Current (IIDLE) | | | ADC Module | 231 | Power-Down Current (IPD) | | | Comparator I/O Operating Modes | 271 | Development Support | | | Comparator Voltage Reference | | Direct Memory Access (DMA) Controller | 8 | | Connections for On-Chip Voltage Regulator | | E | | | CPU | | _ | | | CTMU Configurations | | Electrical Characteristics | | | Time Measurement | 279 | 50 MHz | | | DMA | | Errata | | | Input Capture | 173 | External Clock | | | Inter-Integrated Circuit (I ² C) | | Timer1 Timing Requirements | | | Interrupt Controller | | Timer2, 3, 4, 5 Timing Requirements | | | JTAG Programming, Debugging and Trace P | | Timing Requirements | 322 | | Output Compare Module | | External Clock (50 MHz) | | | PIC32 CAN Module | | Timing Requirements | 356 | | PMP Pinout and Connections to External Dev | | F | | | Reset System | | - | 04 | | RTCC | | Flash Program Memory | | | SPI Module | 181 | RTSP Operation | υ | | Timer1 | | Н | | | Timer2/3/4/5 (16-Bit) | 163 | High Voltage Detect (HVD) | 71 30 | | Typical Multiplexed Port Structure | | riigii voitage Detect (IIVD) | 1 1, 302 | | UART | | I | | | WDT and Power-up Timer | 169 | I/O Ports | 120 | | Brown-out Reset (BOR) | | Parallel I/O (PIO) | | | and On-Chip Voltage Regulator | 302 | Write/Read Timing | | | | | Input Change Notification | | | С | | Instruction Set | | | C Compilers | | Inter-Integrated Circuit (I ² C) | 10 | | MPLAB C18 | 306 | Internal Voltage Reference Specifications | | | Charge Time Measurement Unit. See CTMU. | | Internet Address | | | Clock Diagram | 74 | Interrupt Controller | | | Comparator | | IRG, Vector and Bit Location | | | Specifications | 319, 320 | ING, Vector and bit Location | | | Comparator Module | | M | | | Comparator Voltage Reference (CVref | | Memory Maps | | | Configuration Bit | | Devices with 128 KB of Program Memory | 4. | | Configuring Analog Port Pins | | Devices with 256 KB of Program Memory | | | Controller Area Network (CAN) | | Devices with 512 KB of Program Memory | | | CPU | | Devices with 64 KB of Program Memory | | | Architecture Overview | 36 | Memory Organization | | | Coprocessor 0 Registers | | Layout | | | Core Exception Types | | Microchip Internet Web Site | | | EJTAG Debug Support | | MPASM Assembler | | | Power Management | | MPLAB ASM30 Assembler, Linker, Librarian | | | CPU Module | | | | | >~~. | = 0, 00 | MPLAB Integrated Development Environment Softv | wait 300 |