

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512h-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Control Registers

Register 4-1 through Register 4-8 are used for setting the RAM and Flash memory partitions for data and code.

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	—	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS		
15.8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
10.0	—	—	—	—	—	—	—	—		
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1		
7:0	—	BMX WSDRM	—	—	—	E	BMXARB<2:0	>		
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is cleared										
bit 31-21 Unimplemented: Read as '0' bit 20 BMXERRIXI: Enable Bus Error from IXI bit 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus										
bit 19	 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus bit 19 BMXERRICD: Enable Bus Error from ICD Debug Unit bit 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD a = Disable bus error exceptions for unmapped address accesses initiated from ICD 									
bit 18	BMXERRDI 1 = Enable I	MA: Bus Error	from DMA bi	it mapped addre	ess accesses i	initiated from	DMA			
bit 17	0 = Disable BMXERRDS 1 = Enable b	bus error exce 5: Bus Error fr bus error exce	eptions for un om CPU Data ptions for un	mapped addr a Access bit (mapped addre	ess accesses disabled in De ess accesses i	initiated from bug mode) initiated from	DMA CPU data acc	ess		
bit 16	0 = Disable BMXERRIS 1 = Enable I 0 = Disable	bus error exce : Bus Error fro ous error exce bus error exce	eptions for un om CPU Instru eptions for uni eptions for un	mapped addre uction Access mapped addre mapped addre	ess accesses bit (disabled i ess accesses i ess accesses	n Debug mod initiated from initiated from	CPU data acc le) CPU instructio CPU instructio	on access		
bit 15-7		nted: Read a	s '∩'							
bit 6	BMXWSDR 1 = Data RA 0 = Data RA	M: CPU Instru M accesses f	iction or Data rom CPU hav rom CPU hav	Access from re one wait sta	Data RAM Wa ate for address ates for addre	ait State bit s setup ss setup				
bit 5-3	Unimpleme	nted: Read a	s '0'	0 2010 11011 01						
bit 2-0	BMXARB<2 111 = Rese	2:0>: Bus Mati rved (using th	rix Arbitration ese configura	Mode bits tion modes w	ill produce une	defined behav	vior)			
	011 = Rese 010 = Arbitr 001 = Arbitr 000 = Arbitr	rved (using th ation Mode 2 ation Mode 1 ation Mode 0	ese configura (default)	ition modes w	ill produce und	defined behav	vior)			

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—		IP3<2:0>	IS3<1:0>				
22:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	—	—	—		IP2<2:0>	IS2<1:0>				
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	—	—	—		IP1<2:0>			IS1<1:0>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	_	_	_		IP0<2:0>		IS0<1:0>			

REGISTER 5-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

000 = Interrupt is disabled

bit 25-24 **IS3<1:0>:** Interrupt Subpriority bits

- 11 = Interrupt subpriority is 3
- 10 = Interrupt subpriority is 2
- 01 = Interrupt subpriority is 1
- 00 = Interrupt subpriority is 0
- bit 23-21 Unimplemented: Read as '0'

bit 20-18 IP2<2:0>: Interrupt Priority bits

```
111 = Interrupt priority is 7
```

```
•
•
• • • •
```

- 010 = Interrupt priority is 2
- 001 = Interrupt priority is 1 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'
- bit 12-10 IP1<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7

- 010 = Interrupt priority is 2 001 = Interrupt priority is 1
- 000 = Interrupt is disabled

Note: This register represents a generic definition of the IPCx register. Refer to Table 5-1 for the exact bit definitions.

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

7.1 Control Registers

TABLE 7-1: RESET SFR SUMMARY

ess				Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E600	BCON	31:16		—	HVDR	—			—	—									0000
FOUU	RCON	15:0	-	—	—	—	—	—	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
E610		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
F010	K9WK91	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	SWRST	0000

Legend: — = unimplemented, read as '0'. Address offset values are shown in hexadecimal.

Note 1: The Reset value is dependent on the DEVCFGx Configuration bits and the type of reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0						
15.0	—	—	—	—	—	—	—	—
	R/WC-0, HS	R/WC-0, HS						
7:0	BTSEE						CRC5EF ⁽⁴⁾	DINEE
	DISEF	DIVIALE	DIVIALLY	DIVER'	DENGER	CRC IDEF	EOFEF ^(3,5)	PIDEF

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—	—	—	—
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—		—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—		—	—	—	—	—
7.0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP.	T<3:0>		DIR	PPBI	_	_

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	_	_	_	_	_		—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾	HEBDET			DDDDQT	USBEN ⁽⁴⁾
	JUNE	320	TOKBUSY ^(1,5)	USBROI	TIOSTEIN"	RESUMENT	PPBRSI	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability enabled
- 0 = USB host capability disabled

bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling activated
- 0 = RESUME signaling disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—		—				—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—		_				—			
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
10.0	—	—	-	—	—	-	-	—			
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK			

REGISTER 10-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive enabled
 - 0 = Endpoint n receive disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit enabled
 - 0 = Endpoint n transmit disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake enabled
 - 0 = Endpoint Handshake disabled (typically used for isochronous endpoints)

11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

The following are the key features of this module:

- · Individual output pin open-drain enable or disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt
 when change in pin state is detected
- Operation during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

ess)		e								Bi	ts								
Virtual Addi (BF88_#	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000		31:16	—	—	—	—	_	—	—	—	—	_	—	—	_	—	—	—	0000
0000	ANSELA	15:0	_	—	_	_		ANSELA10	ANSELA9	—	_		—	_		-	—	_	0060
6010	TRISA	31:16	—	—	_	—	_	_	—	_	—	_	—	_	_	_	—	_	0000
0010	INIOA	15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020	PORTA	31:16	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	_	0000
0020		15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	L/(//(15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0040	000/1	15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	CNPUA15	CNPUA14	—	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	—	—	—	_	_	_	—	_	—	_	—		_	—	—		0000
	on bri	15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	—	_	—		_	—	—	—	_	—	_	_		_	_	0000
		15:0	ON	—	SIDL	—		_	—	—	—	_	—	_	_		_	_	0000
6080	CNENA	31:16	—	—	_	—		_	—	—		—	—	_	—	—	_	_	0000
		15:0	CNIEA15	CNIEA14	_	—		CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	—	—	—	_		—	-	_	—	_	—	_	_	_	—	_	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-5: PORTC REGISTER MAP FOR 100-PIN DEVICES ONLY

ess										Bits									
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31 <i>/</i> 15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII Resets
6200		31:16	_	_	_	—	_	—	_	_	_	_	_	—	—	_	—	_	0000
0200	ANOLLO	15:0	—			—	—	—	—	—	—	—	_		ANSELC3	ANSELC2	ANSELC1	—	000E
6210	TRISC	31:16	_	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	—	—	—	—	TRISC4	TRISC3	TRISC2	TRISC1	—	FFFF
6220	PORTC	31:16	_				—	—	—	—	—		_			—	—	_	0000
0220	TOKIO	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—		_	RC4	RC3	RC2	RC1	_	xxxx
6230		31:16	_	_	_	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0200	LATO	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—		_	LATC4	LATC3	LATC2	LATC1	_	xxxx
6240	ODCC	31:16	_				—	—	—	—	—		_			—	—	_	0000
0240	0000	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—		_	ODCC4	ODCC3	ODCC2	ODCC1	_	0000
6250	CNPLIC	31:16	_				—	—	—	—	—		_			—	—	_	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	_	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1	_	0000
6260	CNPDC	31:16	_				—	—	—	—	—		_			—	—	_	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1	_	0000
6270	CNCONC	31:16	_	_	_	_	—	—	—	—	—	_	_	_	_	—	—	_	0000
0270	CINCOINC	15:0	ON	_	SIDL	_	—	—	—	—	—	_	_	_	_	—	—	_	0000
6280	CNENC	31:16	_			—		_	_	_	-			_	_	_	_	_	0000
0200	CINLING	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12		_	_	_	-			CNIEC4	CNIEC3	CNIEC2	CNIEC1	_	0000
6200	CNSTATO	31:16	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	0000
0290	UNDIAIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_	_	_	_	_	_	_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

ess										Bits	5								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6500	ANSELE	31:16		—	—	—	—	_	—	—	_	—	_	-	—	—	_	_	0000
0000	ANOLLI	15:0	_	—	ANSELE13	ANSELE12	_		—	ANSELE8	_		_	_		ANSELE2	ANSELE1	ANSELE0	3107
6510	TRISE	31:16	—	—		—	_	_		—	—		_	_		—	_	_	0000
0010	IIIIOI	15:0	_	—	TRISF13	TRISF12	_			TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6520	PORTE	31:16	_	—		—	_			—	_		_	_				_	0000
0020	TORM	15:0	_	—	RF13	RF12	_			RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	ΙΔΤΕ	31:16	_	—		—	_			—	_		_	_				_	0000
0000	L/II	15:0	_	—	LATF13	LATF12	_			LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCE	31:16	_	—		—	_			—	_		_	_				_	0000
0040	0001	15:0	—	—	ODCF13	ODCF12	—	—	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550		31:16	_	—	—	—	_	-	—	—	—	—	_	-	—	—	_	—	0000
0000		15:0	_	—	CNPUF13	CNPUF12	_	-	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	0000
6560		31:16	_	—	—	—	_	-	—	—	—	—	_	-	—	—	_	—	0000
0000		15:0	_	—	CNPDF13	CNPDF12	_	-	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570	CNCONE	31:16	_	—	—	—	_	-	—	—	—	—	_	-	—	—	_	—	0000
0370	CINCOIN	15:0	ON	—	SIDL	—	_	-	—	—	—	—	_	-	—	—	_	—	0000
6580	CNENE	31:16		_	_	_	_		_	_		_			_	_			0000
0000		15:0	_	_	CNIEF13	CNIEF12	_	_	—	CNIEF8	CNIEF7	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	_		_	_	_	_	-	_	_	_	_	—	_	_	0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	CN STATF7	CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-11: PORTF REGISTER MAP FOR PIC32MX130F128L, PIC32MX150F256L, AND PIC32MX170F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTE bit 7-0	ER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED) ARPT<7:0>: Alarm Repeat Counter Value bits ⁽³⁾ 11111111 = Alarm will trigger 256 times
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0 .
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
3:	This assumes a CPU read will execute in less than 32 PBCLKs.
Note:	This register is reset only on a Power-on Reset (POR).

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24		HR10	<3:0>			HR01	<3:0>				
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:10		MIN10	<3:0>		MIN01<3:0>						
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8		SEC10	<3:0>			SEC0 ²	1<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	—	_	—	—	_	_	_	—			
Legend:											
R = Read	lable bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'				

REGISTER 21-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

'1' = Bit is set

-n = Value at POR

TABLE 27-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		0								Bit	s								(1)
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F040		31:16	_	—	_	—	_	_	_	_	_	—	_	_	_	_	_	_	0000
F240	FINDT	15:0	_	—	—	CVRMD	_	_	_	CTMUMD	-	-	_	_	_	_	_	AD1MD	0000
F050		31:16	_	—	—	—	_	_	—	—	—	—	_	_	_	_	_	_	0000
F250	FINDZ	15:0	_	—	_	—	_	_	_	—	—	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
F 260		31:16	_	_	_	_	_	_	_	—	-	-	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIND3	15:0	_	—	—	_	_	_	_	—	-	-	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	_	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	0000
F270		15:0	_	_	_	—	_	_	—	—	_	—	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	_	_	_	CAN1MD	_	_	—	USBMD ⁽¹⁾	_	—	_	—	_	_	I2C1MD	I2C1MD	0000
F20U	FINDS	15:0	_	_	_	_	SPI4MD	SPI3MD	SPI2MD	SPI1MD	-	-	_	U5MD	U4MD	U3MD	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	RTCCMD	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

© 2014-2016 Microchip Technology Inc.

28.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-up Timer" (DS60001114), Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX1XX/2XX/5XX 64/100-pin devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

AC CHA		ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$									
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions					
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS						
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	_	1 μs + 8 SYSCLK cycles	_	_	_					
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS	—					
SY30	TBOR	BOR Pulse Width (low)	_	1	_	μS	—					

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3v to 3.6v (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp									
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions					
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—		ns	—					
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—		ns	—					
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32					
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31					
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_		ns	See parameter DO32					
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_		ns	See parameter DO31					
SP35	TSCH2DOV,	SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V					
	TscL2DoV	SCKx Edge	_	_	20	ns	VDD < 2.7V					
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—					
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	—					
SP50	TssL2scH, TssL2scL	SSx \downarrow to SCKx \uparrow or SCKx Input	175	_	—	ns	—					
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	—					
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	_					

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

АС СНА	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$									
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions					
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв		—	_					
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 Трв	—	—	_					
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—	—						
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_					
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—					
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns						
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns	_					

TABLE 31-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

