

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512ht-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64

1

64

1

TABLE 3: **PIN NAMES FOR 64-PIN USB DEVICES**

64-PIN QFN⁽⁴⁾ AND TQFP (TOP VIEW)

PIC32MX230F128H PIC32MX530F128H PIC32MX250F256H PIC32MX550F256H PIC32MX270F512H PIC32MX570F512H

		QFN ⁽⁴) TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	USBID/RPF3/RF3
2	AN23/PMD6/RE6	34	VBUS
3	AN27/PMD7/RE7	35	VUSB3V3
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	D-
5	AN17/C1INC/RPG7/PMA4/RG7	37	D+
6	AN18/C2IND/RPG8/PMA3/RG8	38	Vdd
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/VBUSON/RB5	43	RPD9/SDA1/RD9
12	AN4/C1INB/RB4	44	RPD10/SCL1/PMA15/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMA14/RD11
14	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	46	RPD0/INT0/RD0
15	PGEC1/VREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3/RB7	50	AN25/RPD2/SCK1/RD2
19	AVDD	51	AN26/C3IND/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10/RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	C3INC/RD6
23	TMS/CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	55	C3INB/RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	Vdd
26	VDD	58	C3INA/RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/SCK3/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 11.0 "I/O Ports" for more information. 2: 3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	0-PIN TQFP (TOP VIEW)		
	PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L		
			100
Din #	Full Bin Name	Din #	Full Bin Name
FIII #		FIII #	
/1	RPD11/PMA14/RD11	86	VDD
/./		07	
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0
73	RPD0/RD0 SOSCI/RPC13/RC13	87 88	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1
72 73 74	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14	87 88 89	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 PPC0/PMD9/RG1
72 73 74 75	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss	87 88 89 90	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0
72 73 74 75 76 77	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2	87 88 89 90 91	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/DA7
72 73 74 75 76 77 78	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3	87 88 89 90 91 92 93	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/PE0
72 73 74 75 76 77 78 79	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/RD12	87 88 89 90 91 92 93 94	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1
72 73 74 75 76 77 78 79 80	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13	87 88 89 90 91 92 93 94 95	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14
72 73 74 75 76 77 78 79 80 81	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4	87 88 89 90 91 92 93 94 95 96	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12
72 73 74 75 76 77 78 79 80 81 82	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5	87 88 89 90 91 92 93 94 95 96 97	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13
73 74 75 76 77 78 79 80 81 82 83	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6	87 88 89 90 91 92 93 94 95 96 97 98	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13 AN20/PMD2/RE2
72 73 74 75 76 77 78 79 80 81 82 83 84	RPD0/RD0 SOSCI/RPC13/RC13 SOSCO/RPC14/T1CK/RC14 Vss AN24/RPD1/RD1 AN25/RPD2/RD2 AN26/C3IND/RPD3/RD3 AN40/RPD12/PMD12/RD12 AN41/PMD13/RD13 RPD4/PMWR/RD4 RPD5/PMRD/RD5 AN42/C3INC/PMD14/RD6 AN43/C3INB/PMD15/RD7	87 88 89 90 91 92 93 94 95 96 97 98 99	AN44/C3INA/RPF0/PMD11/RF0 AN45/RPF1/PMD10/RF1 RPG1/PMD9/RG1 RPG0/PMD8/RG0 RA6 CTED8/RA7 AN46/PMD0/RE0 AN47/PMD1/RE1 RG14 RG12 RG13 AN20/PMD2/RE2 RPE3/CTPLS/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

1.0 DEVICE OVERVIEW

Note 1: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). This document contains device-specific information for PIC32MX1XX/2XX/5XX 64/100-pin devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX1XX/2XX/ 5XX 64/100-pin family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX1XX/2XX/5XX 64/100-PIN BLOCK DIAGRAM

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

				`	,			
	Pin N	umber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description			
AN36	-	47	I	Analog				
AN37	_	48	I	Analog				
AN38	_	52	I	Analog				
AN39	_	53	I	Analog				
AN40	_	79	I	Analog				
AN41	_	80	I	Analog				
AN42	_	83	I	Analog	Analog input channels.			
AN43	_	84	I	Analog				
AN44	_	87	I	Analog				
AN45	_	88	I	Analog				
AN46	_	93	I	Analog				
AN47	_	94	I	Analog				
CLKI	39	63	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.			
CLKO	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.			
OSC1	39	63	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.			
OSC2	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
SOSCI	47	73	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.			
SOSCO	48	74	0	—	32.768 kHz low-power oscillator crystal output.			
IC1	PPS	PPS	I	ST				
IC2	PPS	PPS	Ι	ST				
IC3	PPS	PPS	I	ST	Capture Input 1-5			
IC4	PPS	PPS	I	ST				
IC5	PPS	PPS	I	ST				
OC1	PPS	PPS	0	ST	Output Compare Output 1			
OC2	PPS	PPS	0	ST	Output Compare Output 2			
OC3	PPS	PPS	0	ST	Output Compare Output 3			
OC4	PPS	PPS	0	ST	Output Compare Output 4			
OC5	PPS	PPS	0	ST	Output Compare Output 5			
OCFA	PPS	PPS	I	ST	Output Compare Fault A Input			
OCFB	30	44	I	ST	Output Compare Fault B Input			
Legend:	CMOS = CN	IOS compat	ible inp	ut or output	Analog = Analog input I = Input O = Output			

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = P

P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

FIGURE 2-10: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

4.2 Special Function Register Maps

TABLE 4-2: BUS MATRIX REGISTER MAP

ess)		Ð										Bits							
Virtual Addr (BF88_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	_	_		BMXCHEDMA	_	_	_	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000 BN	BINIXCON	15:0		Ι		Ι	-	_	-		_	BMXWSDRM	_	_	-	BI	MXARB<2:0>		0047
2010		31:16	_	_	_	_		_	-		—	_	—	—	_		—	—	0000
2010	DIVIADA	15:0		BMXDKPBA<15:0> 0000															
2020		31:16	—	_	—	_	_	_	_	—	_	_	_	—	_	_	—	—	0000
2020	DIVINDODDA	15:0									BM	XDUDBA<15:0>		-			-	-	0000
2030		31:16	—	—	—	—	—	_	—	—	—	_	—	—	_	_	—	—	0000
2000		15:0									BM	XDUPBA<15:0>							0000
2040	BMXDRMS7	31:16		BMXDRMSZ<31:0>										xxxx					
2040	BINADI MICZ	15:0						<u> </u>			Diviz								xxxx
2050	BMXPLIPBA(1)	31:16	—	—	—	—	—	—	—	—	—	—	—	—		BMXPUPBA	<19:16>		0000
2000		15:0									BM	XPUPBA<15:0>							0000
2060	BMXPFMS7	31:16									BM	XPFMS7<31.0>							xxxx
2000	DWATTWOZ	15:0									DIVID								xxxx
2070	BMXBOOTS7	31:16									BMX	BOOTS7<31.03	>						0000
2070 BMXBOOTSZ		15:0																	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R	R	R	R	R	R	R	R		
31:24	BMXDRMSZ<31:24>									
22.16	R	R	R	R	R	R	R	R		
23:10	BMXDRMSZ<23:16>									
45.0	R	R	R	R	R	R	R	R		
15:8				BMXDRI	MSZ<15:8>					
7.0	R	R	R	R	R	R	R	R		
7:0				BMXDR	MSZ<7:0>					

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	— — — BMXPUPBA<19:16>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
15:8				BMXPU	PBA<15:8>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				BMXPU	IPBA<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n = Value at POR	'1' = Bit is set	"0" = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

10.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 10-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The PIC32 USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- Note: The implementation and use of the USB specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REI

REMAPPABLE INPUT EXAMPLE FOR U1RX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	—	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	—	TCKP	S<1:0>	—	TSYNC	TCS	—

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMRT register complete
	This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0:
	0 = Gated time accumulation is enabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value
	00 = 1:1 prescale value
bit 3	Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
23:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	— WAKFIL				SEG2PH<2:0> ^(1,4)			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SEG2PHTS ⁽¹⁾ SAM ⁽²⁾		:	SEG1PH<2:0	>	PRSEG<2:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SJW<1:0>(3)		BRP<5:0>					

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)				
	111 = Length is 8 x TQ				
	•				
	•				
	•				
	000 = Length is 1 x TQ				
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾				
	1 = Freely programmable0 = Maximum of SEG1PH or Information Processing Time, whichever is greater				
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾				
	1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point				
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾				
	111 = Length is 8 x TQ				
	•				
	•				
	•				
	000 = Length is 1 x TQ				
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.				
2:	3 Time bit sampling is not allowed for BRP < 2.				
3:	SJW ≤ SEG2PH.				

- 4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
- This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (C1CON < 23:21 >) = 100).

REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 20-16 FSEL6<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN5: Filter 17 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL4<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

	Indicates the status of Edge 1 and can be written to control edge source			
	1 - Edge 1 bas accurred			
	0 = Edge 1 has not occurred			
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit			
511 20	1 = Input is edge-sensitive			
	0 = Input is level-sensitive			
bit 22	EDG2POL: Edge 2 Polarity Select bit			
	1 = Edge 2 programmed for a positive edge response			
	0 = Edge 2 programmed for a negative edge response			
bit 21-18	EDG2SEL<3:0>: Edge 2 Source Select bits			
	1111 = IC4 Capture Event is selected			
	1110 = C2OUT pin is selected			
	1101 = C1OUT pin is selected			
	1100 = PBCLK clock is selected			
	1011 = IC3 Capture Event is selected			
	1010 = IC2 Capture Event is selected			
	1001 = ICT Capture Event is selected			
	0111 = CTED12 nin is selected			
	0110 = CTED11 pin is selected			
	0101 = CTED10 pin is selected			
	0100 = CTED9 pin is selected			
	0011 = CTED1 pin is selected			
	0010 = CTED2 pin is selected			
	0001 = OC1 Compare Event is selected			
h:+ 17 10	Unimplemented, Deed es (2)			
	Onimplemented: Read as 0			
DIL 15				
	1 = Module is enabled			
hit 11	U = Module is disabled			
DIL 14	CTMUSIDI - Stan in Idla Mada hit			
DIC 13	CIMUSIDE: Stop in idle Mode bit			
	\perp = Discontinue module operation when device enters falle mode			
hit 10	Continue module operation in fulle mode			
DICIZ				
	\perp = Enables edge delay generation			
bit 11	0 - Disables edge delay generation			
	0 = Edges are blocked			
Note 1:	When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.			
2:	The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.			

- 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
- 4: This bit setting is not available for the CTMU temperature diode.

29.0 INSTRUCTION SET

The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
			Operatin	ig tempe	erature	-40°C ≤ -40°C ≤	$\label{eq:constraint} \begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \text{ for V-temp} \end{array}$	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	Iol \leq 9 mA, VDD = 3.3V	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	_	_	0.4	V	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	V	Ioh ≥ -10 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RB14, RC15, RD2, RD10, RD15, RF6, RF13, RG6	2.4	_	_	V	ІОН ≥ -15 mA, VDD = 3.3V	
	Vон1	Output High Voltage	1.5 ⁽¹⁾	_		V	IOH \geq -14 mA, VDD = 3.3V	
DO20A		4x Source Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	2.0 ⁽¹⁾	_	—		IOH \ge -12 mA, VDD = 3.3V	
			3.0 ⁽¹⁾	_	_		Ioh \geq -7 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RB14,	1.5 ⁽¹⁾	—	_	V	$\text{IOH} \geq \text{-22 mA, VDD} = 3.3\text{V}$	
			2.0 ⁽¹⁾	_	_		$\text{IOH} \geq \text{-18 mA, VDD} = 3.3\text{V}$	
		RC15, RD2, RD10, RD15, RF6, RF13, RG6	3.0 ⁽¹⁾	—	_		IOH \ge -10 mA, VDD = 3.3V	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No. Symbol Characteris		stics ⁽²⁾ Min.		Typical ⁽¹⁾	Max.	Units	Conditions		
DO31	TIOR	Port Output Rise Time		_	5	15	ns	Vdd < 2.5V	
				_	5	10	ns	Vdd > 2.5V	
DO32	TIOF	Port Output Fall Time		—	5	15	ns	VDD < 2.5V	
				_	5	10	ns	Vdd > 2.5V	
DI35	TINP	INTx Pin High or Low Time		10	_	_	ns	_	
DI40	Trbp	CNx High or Low Time (input)		2	_	_	TSYSCLK	_	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

Overall Width

Overall Length

Lead Thickness

Lead Width

Molded Package Width

Mold Draft Angle Top

Mold Draft Angle Bottom

Molded Package Length

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

Е

D

E1

D1

с

b

α

β

0.09

0.17

11°

11°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

0.20

0.27

13°

13

12.00 BSC

12.00 BSC

10.00 BSC

10.00 BSC

0.22

12°

12°

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support