

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512ht-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Ren	nappabl	e Per	iphera	als									d		
Device	Pins	Packages ⁽⁴⁾	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers/Capture/Compare ⁽²⁾	UART	SPI/I ² S	External Interrupts ⁽³⁾	10-bit 1 Msps ADC (Channels)	Analog Comparators	USB On-The-Go (OTG)	CAN	CTMU	1 ² C	dWd	RTCC	DMA Channels (Programmable/Dedicate	I/O Pins	JTAG
PIC32MX120F064H	64	QFN, TQFP	64+3	8	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX130F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX130F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	Ν	0	Y	2	Y	Y	4/0	85	Y
PIC32MX230F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX230F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX530F128H	64	QFN, TQFP	128+3	16	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX530F128L	100 100	TQFP TFBGA	128+3	16	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y
PIC32MX150F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Ν	0	Y	2	Y	Y	4/0	53	Y
PIC32MX150F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	N	0	Y	2	Y	Y	4/0	85	Y
PIC32MX250F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX250F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX550F256H	64	QFN, TQFP	256+3	32	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX550F256L	100 100	TQFP TFBGA	256+3	32	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y
PIC32MX170F512H	64	QFN, TQFP	512+3	64	37	5/5/5	4	3	5	28	3	N	0	Y	2	Y	Y	4/0	53	Y
PIC32MX170F512L	100	TQFP	512+3	64	54	5/5/5	5	4	5	48	3	N	0	Y	2	Y	Y	4/0	85	Y
PIC32MX270F512H	64	QFN,	512+3	64	37	5/5/5	4	3	5	28	3	Y	0	Y	2	Y	Y	4/2	49	Y
PIC32MX270F512L	100	TQFP	512+3	64	54	5/5/5	5	4	5	48	3	Y	0	Y	2	Y	Y	4/2	81	Y
PIC32MX570F512H	64	QFN,	512+3	64	37	5/5/5	4	3	5	28	3	Y	1	Y	2	Y	Y	4/4	49	Y
PIC32MX570F512L	100 100	TQFP TFBGA	512+3	64	54	5/5/5	5	4	5	48	3	Y	1	Y	2	Y	Y	4/4	81	Y

TABLE 1: PIC32MX1XX/2XX/5XX 64/100-PIN CONTROLLER FAMILY FEATURES

Note 1: All devices feature 3 KB of Boot Flash memory.

2: Four out of five timers are remappable.

Four out of five external interrupts are remappable.
Please contact your local Microchip Sales Office for information regarding the availability of devices in the 100-pin TFBGA package.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

5.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupt Controller"** (DS60001108) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MX1XX/2XX/5XX 64/100-pin devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX1XX/2XX/5XX 64/100-pin interrupt module includes the following features:

- Up to 76 interrupt sources
- Up to 46 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Software can generate any interrupt
- User-configurable interrupt vector table location
- User-configurable interrupt vector spacing

Note: The dedicated shadow register set is not available on these devices.

FIGURE 5-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾

- 1111 = Reserved; do not use
- 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

10.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 10-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The PIC32 USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- Note: The implementation and use of the USB specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

11.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 11-2) are used to control output mapping. Like the [*pin name*]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPA0

11.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

11.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [*pin name*]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

11.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [*pin name*]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

NOTES:

Control Registers 17.1

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5900	SDI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:	0>	MCLKSEL	. —	_	—	_	_	SPIFE	ENHBUF	0000
5600	SFILCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	L<1:0>	0000
5910	QDI1QTAT	31:16		_	_		RXE	BUFELM<4:	0>		—	—	_		TX	BUFELM<4	:0>		0000
5810	SFIISIAI	15:0	_	_	_	FRMERR	SPIBUSY	—	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EE
5820	SPI1BUF	31:16 15:0								DATA<	:31:0>								0000
5000	SDIADDO	31:16	_	-	—	_	_	_	_	—	—	—	_	_	_	—	_	—	0000
5830	SFIIDKG	15:0	_	—	—		—	—	—					BRG<8:0>					0000
		31:16	_	—	—		—	—	—	_	—	—	—		—	—		—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMC)D<1:0>	0000
E A 00	SDISCON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:	0>	MCLKSEL	_	_	_	_	_	SPIFE	ENHBUF	0000
5A00	0112001	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5440	CDIPCTAT	31:16	—	—	—		RXE	BUFELM<4:	0>		—	—	—		TX	BUFELM<4	:0>		0000
SATU	SFIZSTAT	15:0		_	—	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EE
5A20	SPI2BUF	31:16 15:0								DATA<	:31:0>								0000
5 A 20	SDIADDC	31:16	_	—	—	—	—	—	_		—	—	—		—	—	—	—	0000
5A30	SPIZERG	15:0	_	-	_	_	_	_	_					BRG<8:0>					0000
		31:16	_	—	—		—	—	—	_	—	—	—		—	—		—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	—	_	AUD MONO	_	AUDMC)D<1:0>	0000
	00100001	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:	0>	MCLKSEL	—	_	_	_	_	SPIFE	ENHBUF	0000
5000	SPI3CON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	L<1:0>	0000
		31:16	_	_	_		RXE	BUFELM<4:	0>		—	—	_		TX	BUFELM<4	:0>		0000
5C10	SPI3STAT	15:0	_	_	_	FRMERR	SPIBUSY	—	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	[_]	SPITBF	SPIRBF	19EE
	0.010.0115	31:16																	0000
5C20	SPI3BUF	15:0		-	-	-			-	DATA<	:31:0>						-		0000
5030	SPI3BRG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	0000
3030	OF IJDING	15:0	_	-	_	—	—	_	_					BRG<8:0>					0000
Leaer	nd: x = ur	hknowr	n value on F	Reset: — = ı	unimpleme	nted, read a	s '0'. Reset	values are s	shown in he	xadecimal.									

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Note 1: Registers" for more information.

2: This register is only available on 100-pin devices.

19.1 Control Registers

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP

ress		e								Bi	its								s
Virtual Add (BF80_#	Registe Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
<u></u>		31:16	—	_	_	_	—	—	—	_	_	_	—	_	_	_	_	_	0000
6000	UTWODE	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6010	111574(1)	31:16	—	—	_	—	—	—	—	ADM_EN			-	ADDF	R<7:0>				0000
0010	UISIA	15:0	UTXISI	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020		31:16	_	—	_				—	—	—	—	—	—	—	—	—	—	0000
0020	UTIXILE	15:0			_				—	TX8				Transmit	t Register				0000
6030	U1RXREG	31:16	—	—	—	—	—	—	—	—	_	—	—		—	—			0000
	01104120	15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0		-		-	-		Bau	d Rate Gen	erator Pres	caler							0000
6200	U2MODE ⁽¹⁾	31:16	—	—			—	—	—	_	—	—	—	—	—	—		—	0000
		15:0	ON	_	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6210	U2STA ⁽¹⁾	31:16	—	—	—	—	—	—		ADM_EN			r	ADDF	R<7:0>	r	1	1	0000
		15:0	UTXISI	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFI
6220	U2TXREG	31:16	_	—		—	—	—	_	—	—	—	—		—	—			0000
		15:0	—	—	_	—		—	_	TX8				Transmit	t Register				0000
6230	U2RXREG	31:16	_						_	_	—	—	—			—	—	—	0000
		15:0	_						_	RX8				Receive	Register				0000
6240	U2BRG ⁽¹⁾	31:16			_		—	_				. —			—	_			0000
		15:0			1				Bau	d Rate Gen	erator Pres	caler							0000
6400	U3MODE ⁽¹⁾	31:16	_		-	-	-	—	—		—	—		—	—		<u> </u>	-	0000
		15.0	ON	_	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—		—	—	—	—	—	ADM_EN				ADDF	₹<7:0>		0500		0000
		15:0	UTXISI	=L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16										_				_			0000
		15:0	_		-			_	_	TX8				Transmit	t Register				0000
6430	U3RXREG	31:16	_		-			_	_	—	_	—	—			—	—	—	0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

ess	-	đ								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6440		31:16	_				—			—		—			—	—		—	0000
0440	U3DKG.	15:0							Bau	d Rate Gen	erator Pres	caler			-				0000
6600		31:16	_	_	—	_		_	_	—			_	_			_	—	0000
0000	OHMODE	15:0	ON		SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	114STA(1)	31:16	_	_	—	_		_	_	ADM_EN				ADDF	R<7:0>				0000
0010	04017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620		31:16	—		_	_		_		—			_	_	_	—	_	—	0000
0020	OFINILO	15:0	—		_	_		_		TX8				Transmit	Register				0000
6630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	OHIVINEO	15:0	—		_	_		_		RX8				Receive	Register				0000
6640		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	0 10100	15:0							Bau	d Rate Gen	erator Pres	caler						•	0000
6800	U5MODE(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	COMODE	15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA(1,2)	31:16	—	—	—	_	—	_	—	ADM_EN				ADDR	R<7:0>	1		1	0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
0020	001/11/20	15:0	—	_	—	_	—	_	_	TX8				Transmit	Register				0000
6830	U5RXRFG(1,2)	31:16	_	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
	00.04.20	15:0	_	_	—	_	—	_	_	RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
00.0		15:0							Bau	d Rate Gene	erator Pres	caler							0000

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

REGISTI	ER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	<pre>URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 =Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)</pre>
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	 OERR: Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

TABLE 23-1: CAN1 REGISTER SUMMARY (CONTINUED)

ess										Bits	6								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
B340	C1FIFOBA	31:16								C1FIFOBA	<31:0>								0000
2010	0.1.1.05/1	15:0																	0000
P250	C1FIFOCONn	31:16	—	—	-	_	_	—	—	—	-	—	_		I	SIZE<4:0>			0000
6350	(n = 0-15)	15:0	_	FRESET	UINC	DONLY	_	-	_	—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI	<1:0>	0000
Daca	C1FIFOINTn	31:16	_	_	_	_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	_	_	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
B300	(n = 0-15)	15:0	_	_	_	_	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	_	_	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	. 0000
D070	C1FIFOUAn	31:16									-21.05								0000
B3/0	(n = 0-15)	15:0								CIFIFOUR	<31:0>								0000
D200	C1FIFOCIn	31:16	_	_	-	_	-	-	_	_		-	-	_	_	-	_	_	0000
D380	(n = 0-15)	15:0	_	_	_	_	_	_	_	_	_	_	_		C1	FIFOCIn<4:	0>		0000

Legend: Note 1 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more 1: information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	_	-
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	-
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0 -	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 23-7: C1RXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVF<15:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 23-8: C1TMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31.24				CANTS<	<15:8>								
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10				CANTS	<7:0>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15.0	CANTSPRE<15:8>												
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0				CANTSPF	RE<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (C1CON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits 1111 1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks . . 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: C1TMR will be paused when CANCAP = 0.

2: The C1TMR prescaler count will be reset on any write to C1TMR (CANTSPRE will be unaffected).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—	—	—	—	—	-	—	—						
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:10	—	—	—	—	—		—	—						
15.0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
10.0	—	—	SIDL	—	—	—	—	—						
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0						
	_	_	_	_	_	C3OUT	C2OUT	C10UT						

REGISTER 24-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in IDLE Control bit

1 = All Comparator modules are disabled in IDLE mode

0 = All Comparator modules continue to operate in the IDLE mode

bit 12-3 Unimplemented: Read as '0'

- bit 2 C3OUT: Comparator Output bit
 - 1 = Output of Comparator 3 is a '1'
 - 0 = Output of Comparator 3 is a '0'

bit 1 C2OUT: Comparator Output bit

- 1 = Output of Comparator 2 is a '1'
- 0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit

- 1 = Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

28.2 Registers

Virtual Address (BFC0_#) Bits All Resets Bit Range Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY _ _ _ _ _ ____ _ xxxx _ _ _ _ _ 0BF0 DEVCFG3 15:0 USERID<15:0> xxxx 31:16 FPLLODIV<2:0> _ — _ _ _ _ _ _ _ _ _ xxxx _ 0BF4 DEVCFG2 UPLLEN⁽¹⁾ 15:0 _ UPLLIDIV<2:0>(1) FPLLMUL<2:0> _ FPLLIDIV<2:0> xxxx _ _ _ FWDTWINSZ<1:0> FWDTEN WINDIS WDTPS<4:0> 31:16 _ _ xxxx _ ____ _ 0BF8 DEVCFG 15:0 FCKSM<1:0> FPBDIV<1:0> OSCIOFNC POSCMOD<1:0> IESO SOSCE FNOSC<2:0> _ _ _ _ xxxx 31:16 CP BWP PWP<9:6> _ _ _ _ _ _ _ _ xxxx _ _ 0BFC DEVCFG0 15:0 PWP<5:0> _ _ _ ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ _ _

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE AND REVISION ID SUMMARY

by end	ess								Bits									(1)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
P20 CP3CON 15:0 — — IOLOCK PMDLOCK — — — — — — — IODEVID F20 DEVID 31:16 VER<3:0> VER<3:0> DEVID DEVID<27:16> xxx F230 SYSKEY(3) 31:16 15:0 SYSKEY<31:0> SYSKEY 000	F200	CECCON	31:16	—	_	_	—	_	—	_	_	_	_	—	_	—	—	_	—	0000
PEVID 31:16 VER<3:0> DEVID DEVID<27:16> DEVID 15:0 DEVID<15:0> DEVID	F200	CFGCON	15:0	-	_	IOLOCK	PMDLOCK		—	_	_	_	_	_	—	JTAGEN	TROEN ⁽²⁾	—	TDOEN	000B
P220 DEVID DEVID xxx 15:0 DEVID 000 F230 SYSKEY(3) 31:16 000 15:0 SYSKEY 000	F000		31:16		VER	<3:0>							DEVID	<27:16>						xxxx
F230 SYSKEY ⁽³⁾ 31:16 15:0 SYSKEY<31:0>	F220	DEVID	15:0	DEVID<15:0> xxx							xxxx									
F230 STSKET 15:0 STSKET	F000	202 0V0//FX (21.0)								0000										
	F230	STOKET	15:0		SYSKEY<31:0>										0000					

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device.

2: This bit is not available on 64-pin devices.

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Characteristic	Voo Bango	Tomp Bango	Max. Frequency			
	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family			
DC5	VBOR-3.6V	-40°C to +105°C	40 MHz			

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	-40 — +140 -40 — +105 PINT + PI/O		W	
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	A	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP, 10 mm x 10 mm	θJA	55	-	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 12 mm x 12 mm	θJA	52	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 14 mm x 14 mm	θJA	50		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	—		ns	—		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—		ns	—		
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32		
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_		ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_		ns	See parameter DO31		
SP35	TSCH2DOV,	SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V		
	TscL2DoV	SCKx Edge	_	_	20	ns	VDD < 2.7V		
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10			ns	—		
SP50	TssL2scH, TssL2scL	$\overline{\operatorname{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175	_	—	ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	_	25	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter Typical ⁽²⁾ Max.		Units	Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)								
MDC34a	9.5	24	mA	50 MHz				

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHAF	RACTERIST	ïcs	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions						
Power-Down Current (IPD) (Note 1)										
MDC40k	50	150	μA	-40°C	Rass Dower Down Current					
MDC40n	250	650	μA	+85°C	Base Power-Down Current					
Module D	oifferential (Current								
MDC41e	15	55	μA 3.6V Watchdog Timer Current: ΔIWDT (Note 3)							
MDC42e	34	55	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)					
MDC43d	1100	1800	μA	3.6V ADC: ΔΙΑDC (Notes 3,4)						

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensior	Dimension Limits			MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B