

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512l-50i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

				`	,
	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
AN36	-	47	I	Analog	
AN37	_	48	I	Analog	
AN38	_	52	I	Analog	
AN39	_	53	I	Analog	
AN40	_	79	I	Analog	
AN41	_	80	I	Analog	
AN42	_	83	I	Analog	Analog input channels.
AN43	_	84	I	Analog	
AN44	_	87	I	Analog	
AN45	_	88	I	Analog	
AN46	_	93	I	Analog	
AN47	_	94	I	Analog	
CLKI	39	63	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.
OSC1	39	63	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	74	0	—	32.768 kHz low-power oscillator crystal output.
IC1	PPS	PPS	I	ST	
IC2	PPS	PPS	Ι	ST	
IC3	PPS	PPS	I	ST	Capture Input 1-5
IC4	PPS	PPS	I	ST	
IC5	PPS	PPS	I	ST	
OC1	PPS	PPS	0	ST	Output Compare Output 1
OC2	PPS	PPS	0	ST	Output Compare Output 2
OC3	PPS	PPS	0	ST	Output Compare Output 3
OC4	PPS	PPS	0	ST	Output Compare Output 4
OC5	PPS	PPS	0	ST	Output Compare Output 5
OCFA	PPS	PPS	I	ST	Output Compare Fault A Input
OCFB	30	44	I	ST	Output Compare Fault B Input
Legend:	CMOS = CN	IOS compat	ible inp	ut or output	Analog = Analog input I = Input O = Output

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = P

P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

NOTES:

2.9 Considerations When Interfacing to Remotely Powered Circuits

2.9.1 NON-5V TOLERANT INPUT PINS

A quick review of the absolute maximum rating section in **31.0** "**40 MHz Electrical Characteristics**" will indicate that the voltage on any non-5v tolerant pin may not exceed AVDD/VDD + 0.3V. Figure 2-5 shows an example of a remote circuit using an independent power source, which is powered while connected to a PIC32 non-5V tolerant circuit that is not powered.

FIGURE 2-5: PIC32 NON-5V TOLERANT CIRCUIT EXAMPLE

FIGURE 2-10: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—		_	_
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	—	—	—	_	—	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
Dit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)0 = No interrupt is pending
© 2014-201	16 Microchin Technology Inc. Preliminary

TABLE 11-12: PORTF REGISTER MAP FOR PIC32MX230F128L, PIC32MX530F128L, PIC32MX250F256L, PIC32MX550F256L, PIC32MX270F512L, AND PIC32MX570F512L DEVICES ONLY

ess										Bits	;								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6500	ANSELE	31:16	—	—	—	—	—	_	_	—	—	—	—	—	—	—	_	—	0000
0000	, aloceli	15:0	—	—	ANSELE13	ANSELE12	—	_	_	ANSELE8	—	—	—	—	—	ANSELE2	ANSELE1	ANSELE0	3107
6510	TRISE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	11401	15:0	_	—	TRISF13	TRISF12	—	—	—	TRISF8	—	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6520	PORTE	31:16	_	—	—	—	_	_	_	—	_	—	—		—	—	_	—	0000
0020	1 Oltin	15:0	—	—	RF13	RF12	—	_	_	RF8	—	—	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATE	31:16	—	—	—	—	—	_	_	—	—	—	—	—	—	—	—	—	0000
0000	2,00	15:0	—	—	LATF13	LATF12	—	_	_	LATF8	—	—	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCE	31:16	_	—	—	—		_		—	_	—	—		—	—			0000
0040	0001	15:0	_	—	ODCF13	ODCF12		_		ODCF8	_	—	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550	CNPUE	31:16	_	—	—	—		_		—	_	—	—		—	—			0000
0000		15:0	_	—	CNPUF13	CNPUF12		_		CNPUF8	_	—	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	0000
6560	CNPDE	31:16	_	—	—	—		_		—	_	—	—		—	—			0000
0000		15:0	_	—	CNPDF13	CNPDF12		_		CNPDF8	_	—	CNPDF5	CNPFF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570	CNCONE	31:16	_	—	—	—		_		—	_	—	—		—	—			0000
0070	onoon	15:0	ON	—	SIDL	—		_		—	_	—	—		—	—			0000
6580	CNENE	31:16	—	—	—	—	—	—	-	—	—	—	—	_	—	—	—	_	0000
0000	CINEINI	15:0	—	—	CNIEF13	CNIEF12	_	_	_	CNIEF8	_	—	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	-	_	_	_	_	_	_	_	_	_	—	-	_	_	0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	_	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

ss										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
ED00	PDC2P	31:16	_	_	_	_	—	_	_	—	—	—	_	—	_	_		_	0000
FB00	RPG2R	15:0		—	—	_	_	—	—	_	_	_	_	_		RPC2	<3:0>		0000
EDOC	DDC2D	31:16		—	—	_	_	—	_	_	_	_	_	_	_	_			0000
FBOC	RECOR	15:0		—	—	—	_	—	—	_	_	_	—	_		RPC3	<3:0>		0000
FROO	PPC/P	31:16		—		—	—	—	—	—	—	—	—	—	—	—	_	—	0000
1 890	KF 04K	15:0	-	—	—	—	_	—	—	_	_	_	—	_		RPC4	<3:0>		0000
EBB4	PPC13P	31:16		—		—	—	—	—	—	—	—	—	—	—	—	_	—	0000
1004	IN CISIN	15:0	_	—	—	—		—	—				—			RPC1	3<3:0>		0000
FBB8	RPC14R	31:16	_	—	—	—		—	—				—		—	—	—	—	0000
1 000		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPC14	4<3:0>		0000
FBC0	RPD0R	31:16	_		—	—	_			_	_	_	—		—	—	—	—	0000
		15:0	_		—	—	_			_	_	_	—			RPD0	<3:0>		0000
FBC4	RPD1R	31:16		—		—	—	—		—	—	—	—	—			—	—	0000
		15:0				—	—			—	—	—	—	—		RPD1	<3:0>		0000
FBC8	RPD2R	31:16	_		—	—	—				—		—			—	—	—	0000
		15:0				—	—			—	—	—	—	—		RPD2	<3:0>		0000
FBCC	RPD3R	31:16				—	—			—	—	—	—	—		—	—	—	0000
	_	15:0	_		—	—	—				—		—			RPD3	<3:0>		0000
FBD0	RPD4R	31:16			—	—	—			—	—	—	—	—		—	—	—	0000
		15:0	—	-	-	—	—	-	_	_	—	—	—	—		RPD4	<3:0>		0000
FBD4	RPD5R	31:16	—	-	-	—	—	-	_	_	—	—	—	—	—	—	—	—	0000
		15:0	_			_	_			_	_	_	_	_		RPD5	<3:0>		0000
FBE0	RPD8R	31:16	_			_							_				_		0000
		15:0	_			_							_			RPD8	<3:0>		0000
FBE4	RPD9R	31:16				_											-		0000
		15:0	_		-	_	_		_	_	_	_	_	_		RPD9	<3:0>		0000
FBE8	RPD10R	31:16	_							_		_					-	_	0000
		15:0	_							_		_				RPD10)<3:0>		0000
FBEC	RPD11R	31:16	_			_	_			_	_	_	_	_		-	—	—	0000
		15:0	_							_		_				RPD1	<3:0>		0000
FBF0	RPD12R	31:10	_		_	_	—		_	—	_	—	_	—	_		—	_	0000
		15:0	—	_	-	—	—	_	_	—	—	—	—	—		RPD12	2<3:0>		0000
FBF8	RPD14R	31:16	—		_	—	—		_	—	—	—	—	—	—			—	0000
		15:0	—	—		—	—	—	—	_	_	—	—	_		RPD14	+<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	—	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	—	TCKP	S<1:0>	—	TSYNC	TCS	—

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMRT register complete
	This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0:
	0 = Gated time accumulation is enabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value
	00 = 1:1 prescale value
bit 3	Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 13-1: TxCON: TYPE B TIMER 'x' CONTROL REGISTER ('x' = 2 THROUGH 5)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_		_	_
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15.0	ON ^(1,3)	—	SIDL ⁽⁴⁾	—	—	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7.0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	_	TCS ⁽³⁾	_

Legena:	l	_ec	jei	nd	:
---------	---	-----	-----	----	---

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode
- bit 12-8 Unimplemented: Read as '0'
- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

- bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾
 - 111 = 1:256 prescale value
 - 110 = 1:64 prescale value
 - 101 = 1:32 prescale value
 - 100 = 1:16 prescale value
 - 011 = 1:8 prescale value
 - 010 = 1:4 prescale value
 - 001 = 1:2 prescale value
 - 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	-	—	—	—	—	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	PTEN<1	15:14> ⁽¹⁾		PTEN<13:8>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTEN	<7:2>			PTEN<	<1:0> ⁽²⁾

REGISTER 20-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	—	—	—	_	—	-		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	_		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾	AMASK<3:0> ⁽³⁾					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		ARPT<7:0> ⁽³⁾								

REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽³⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved; do not use
- 1011 = Reserved; do not use
- 11xx = Reserved; do not use
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	CSSL31 ⁽²⁾	CSSL30 ⁽¹⁾	CSSL29 ⁽¹⁾	CSSL28 ⁽¹⁾	CSSL27	CSSL26	CSSL25	CSSL24
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	CSSL23	CSSL21	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 22-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CSSL<31:0>: ADC Input Pin Scan Selection bits

- 1 = Select ANx for input scan; CSSLx = ANx, where 'x' = 0-31
- 0 = Skip ANx for input scan; CSSLx = ANx, where 'x' = 0-31
- Note 1: For devices with 64 pins, CSSL28 selects IVREF (Band Gap) for scan; CSSL29 selects CTMU temperature diode for scan; and CSSL30 selects CTMU input for scan
 - 2: On devices with less than 32 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	—	CSSL50 ⁽¹⁾	CSSL49 ⁽¹⁾	CSSL48 ⁽¹⁾
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	CSSL47	CSSL46	CSSL45	CSSL44	CSSL43	CSSL42	CSSL41	CSSL40
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	CSSL39	CSSL38	CSSL37	CSSL36	CSSL35	CSSL34	CSSL33	CSSL32

REGISTER 22-6: AD1CSSL2: ADC INPUT SCAN SELECT REGISTER 2

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-19 Unimplemented: Read as '0'

- bit 18-0 CSSL<50:32>: ADC Input Pin Scan Selection bits
 - 1 = Select ANx for input scan; CSSLx = ANx, where 'x' = 32-50
 - 0 =Skip ANx for input scan; CSSLx = ANx, where 'x' = 32-50
- Note 1: For devices with 100 or more pins, CSSL48 selects IVREF (Band Gap) for scan; CSSL49 selects CTMU temperature diode for scan; and CSSL50 selects CTMU input for scan

Note: The ANx inputs in this register only support devices with 100 or more pins.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
51.24				SID<1	0:3>							
00.40	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
23.10	SID<2:0>			—	MIDE	—	EID<	17:16>				
15:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
10.0	EID<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				EID<	EID<7:0>							

REGISTER 23-9: C1RXMn: CAN ACCEPTANCE FILTER MASK 'n' REGISTER (n = 0, 1, 2 OR 3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include the SIDx bit in filter comparison
- 0 = The SIDx bit is a 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
 - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
 - Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))

bit 18 Unimplemented: Read as '0'

- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Include the EIDx bit in filter comparison
 - 0 = The EIDx bit is a 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

REGISTER	23-10: C1FLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
hit 15	ELTEN4: Filter 4 Enchle bit
DIUID	FLIENT: Filler I Effable bit
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 12 8	ESEL 1 - Acceptance Mask 0 selected
DIL 12-0	11111 = Reserved
	•
	•
	10000 = Reserved
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled
bit 6 5	0 - Filter Is disabled
DIL 0-5	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	•
	01111 = Message matching filter is stored in FIFO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

NOTES:

TABLE 27-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess	Register Name	Bit Range		Bits														(1)	
Virtual Addr (BF80_#)			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F240		31:16	_	—	_	—	_	_	_	_	_	—	_	_	_	_	_	_	0000
	PIVIDT	15:0	_	—	—	CVRMD	_	_	_	CTMUMD	-	-	_	_	_	_	_	AD1MD	0000
F250	PMD2	31:16	_	—	—	—	_	_	—	—	—	—	_	_	_	_	_	_	0000
		15:0	_	—	_	—	_	_	_	—	—	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
F 260		31:16	_	_	_	_	_	_	_	—	-	-	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	F IVID3	15:0	_	—	—	_	_	_	_	—	-	-	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	_	_	_	—	_	_	—	—	_	—	_	—	_	_	—	_	0000
F270	FIVID4	15:0	_	_	_	—	_	_	—	—	_	—	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
F280		31:16	_	_	_	CAN1MD	_	_	—	USBMD ⁽¹⁾	_	—	_	—	_	_	I2C1MD	I2C1MD	0000
	FINDS	15:0	_	_	_	_	SPI4MD	SPI3MD	SPI2MD	SPI1MD	-	-	_	U5MD	U4MD	U3MD	U2MD	U1MD	0000
F290	PMD6	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	PMPMD	0000
	PMD6	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	RTCCMD	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

© 2014-2016 Microchip Technology Inc.

29.0 INSTRUCTION SET

The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

TABLE 31-18: PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristi	Min.	Typical	Max.	Units	Conditions			
OS50	FPLLI PLL Voltage Contro Oscillator (VCO) In Frequency Range		led ut	3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes		
OS51 Fsys		On-Chip VCO System Frequency		60		120	MHz	_		
OS52 TLOCK		PLL Start-up Time (Lock Time)		—	-	2	ms	—		
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25		+0.25	%	Measured over 100 ms period		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 31-19: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No. Characteristics		Min.	Typical	Max.	Units	Conditions			
Internal	nternal FRC Accuracy @ 8.00 MHz ⁽¹⁾								
F20a	20a FRC		—	+0.9	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$			
F20b FRC		-2	_	+2	%	$-40^\circ C \le T A \le +105^\circ C$			

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 31-20: INTERNAL LPRC ACCURACY

АС СНА	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions				
LPRC @ 31.25 kHz ⁽¹⁾										
F21 LPRC		-15	_	+15	%	_				

Note 1: Change of LPRC frequency as VDD changes.

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

АС СН	IARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_		
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40		—	ns	_		
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	—	_	60	ns	_		
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	_	10	ns	_		
PS5	Tcs	CS Active Time	Трв + 40		—	ns	—		
PS6	TwR	WR Active Time	Трв + 25		_	ns			
PS7	TRD	RD Active Time	Трв + 25		_	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

