

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512l-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES (CONTINUED)

10	100-PIN TQFP (TOP VIEW)													
	PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L													
			100 1											
Pin #	Full Pin Name	Pin #	Full Pin Name											
71	RPD11/PMA14/RD11	86	Vdd											
72	RPD0/RD0	87	AN44/C3INA/RPF0/PMD11/RF0											
73	SOSCI/RPC13/RC13	88	AN45/RPF1/PMD10/RF1											
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1											
75	Vss	90	RPG0/PMD8/RG0											
76	AN24/RPD1/RD1	91	RA6											
77	AN25/RPD2/RD2	92	CTED8/RA7											
	AN26/C3IND/RPD3/RD3	93	AN46/PMD0/RE0											
	AN40/RPD12/PMD12/RD12	94	AN47/PMD1/RE1											
	AN41/PMD13/RD13	95	RG14											
-	RPD4/PMWR/RD4	96	RG12											
02	RPD5/PMRD/RD5	97	RG13											
	AN42/C3INC/PMD14/RD6	98	AN20/PMD2/RE2											
	AN43/C3INB/PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3											
85	VCAP	100	AN21/PMD4/RE4											

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 5: PIN NAMES FOR 100-PIN USB DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MX230F128L PIC32MX530F128L PIC32MX250F256L PIC32MX550F256L PIC32MX270F512L PIC32MX570F512L

100

Pin #	Full Pin Name	Div	n #	Full Pin Name
1	AN28/RG15		-	/ss
2	VDD	-		
3	AN22/RPE5/PMD5/RE5	3	.0	ICK/CTED2/RA1
4	AN23/PMD6/RE6	3	-	AN34/RPF13/SCK3/RF13
5	AN27/PMD7/RE7	4	.0 A	AN35/RPF12/RF12
6	AN29/RPC1/RC1	4	-1 A	AN12/PMA11/RB12
7	AN30/RPC2/RC2	4	-2 A	AN13/PMA10/RB13
8	AN31/RPC3/RC3	4	-3 A	AN14/RPB14/CTED5/PMA1/RB14
9	RPC4/CTED7/RC4	4	4 A	AN15/RPB15/OCFB/CTED6/PMA0/RB15
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6	4	·5 \	/ss
11	AN17/C1INC/RPG7/PMA4/RG7	4	·6 \	/DD
12	AN18/C2IND/RPG8/PMA3/RG8	4	·7 A	AN36/RPD14/RD14
13	MCLR	4	-8 A	AN37/RPD15/SCK4/RD15
14	AN19/C2INC/RPG9/PMA2/RG9	4	.9 F	RPF4/PMA9/RF4
15	Vss	5	60 F	RPF5/PMA8/RF5
16	Vdd	5	i1 L	JSBID/RPF3/RF3
17	TMS/CTED1/RA0	5	2 A	AN38/RPF2/RF2
18	AN32/RPE8/RE8	5	3 A	AN39/RPF8/RF8
19	AN33/RPE9/RE9	5	i4 \	/BUS
20	AN5/C1INA/RPB5/VBUSON/RB5	5	5 \	/USB3V3
21	AN4/C1INB/RB4	5	6 E)-
22	PGED3/AN3/C2INA/RPB3/RB3	5	7 E)+
23	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	5	8 5	SCL2/RA2
24	PGEC1/AN1/RPB1/CTED12/RB1	5	9 5	SDA2/RA3
25	PGED1/AN0/RPB0/RB0	6	т 0	IDI/CTED9/RA4
26	PGEC2/AN6/RPB6/RB6	6	i1 T	IDO/RA5
27	PGED2/AN7/RPB7/CTED3/RB7	6	i2 \	/DD
28	VREF-/PMA7/RA9	6	i3 (DSC1/CLKI/RC12
29	VREF+/PMA6/RA10	6	i4 (DSC2/CLKO/RC15
30	AVdd	6	i5 Ν	/ss
31	AVss	6	6 F	RPA14/SCL1/RA14
32	AN8/RPB8/CTED10/RB8	6	57 F	RPA15/SDA1/RA15
33	AN9/RPB9/CTED4/RB9	6	i8 F	RPD8/RTCC/RD8
34	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	6	;9 F	RPD9/RD9
35	AN11/PMA12/RB11	7	'0 F	RPD10/SCK1/PMA15/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 5-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

		Vector		Persistent			
Interrupt Source ⁽¹⁾	IRQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt
	1	Highe	st Natural Or	der Priority	l.	1	
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 – External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E – Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 – Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 – Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 – External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 – Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E – Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 – Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 – Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 – External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 – Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E – Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 – Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 – Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 – External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 – Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E – Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 – Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 – Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 – External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 – Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E – Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 – Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 – Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 – ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM – Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC – Real-Time Clock and Calendar	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
FCE – Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 – Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 – Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
USB – USB Interrupts	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	Yes
SPI1E – SPI1 Fault	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1RX – SPI1 Receive Done	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1TX – SPI1 Transfer Done	37	30	IFS1<5>	IEC1<5>	IPC7<20:18>	IPC7<17:16>	Yes
U1E – UART1 Fault	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes
U1RX – UART1 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>	Yes
U1TX – UART1 Transfer Done	40	31	IFS1<8>	IEC1<8>	IPC7<28:26>	IPC7<25:24>	Yes
I2C1B – I2C1 Bus Collision Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1S – I2C1 Slave Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>	Yes
2C1M – I2C1 Master Event	43	32	IFS1<11>	IEC1<11>	IPC8<4:2>	IPC8<1:0>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	-	_	—
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	_		—	_		—	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0	_	_	_	_	_	_	_	SWRST ⁽¹⁾

REGISTER 7-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Cleared by hardware									
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section
 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess											Bit	s							(0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—		—	_	_	—	_		_	—	—	-	-	—		0000
5390	UIEF9	15:0				_	_	_	—	_	-		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	_		_			_		_		_	—	-		—		0000
53A0 l	UIEFIU	15:0	Ι	Ι		_	-	-	_	_			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
53BU		15:0	_	_	_		_	_	—	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
5500	UIEF12	15:0	Ι	_	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	Ι	_	—	_	—	—	_	—	—	_	_	—	—	—	—	—	0000
55D0	UIEF 13	15:0	Ι	_	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_			_	_	_	_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_			_	_		-	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_			_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

	Bit														
Bit Range	Bit 31/23/15/7	31/23/15/7 30/22/14/6		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31.24	_	—	_	—	_	_	_	-							
23:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0							
23.10		_		_	_	-	-	-							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
15.0		_		_	_	-	-	-							
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7.0	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK							

REGISTER 10-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device enabled
 - 0 = Direct connection to a low-speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive enabled
 - 0 = Endpoint n receive disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit enabled
 - 0 = Endpoint n transmit disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake enabled
 - 0 = Endpoint Handshake disabled (typically used for isochronous endpoints)

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

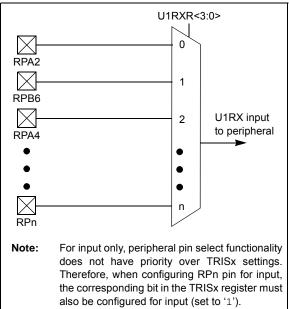
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REI

REMAPPABLE INPUT EXAMPLE FOR U1RX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	—	_	_			_				
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—		_	_	—	-	—				
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
15:8	ON	—	SIDL	_	_	—	_	—				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0	_	_	_				_	_				

REGISTER 11-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A – G)

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = CPU Idle Mode halts CN operation
 - 0 = CPU Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

15.1 Control Registers

TABLE 15-1: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 5 REGISTER MAP

ess		â								Bi	s								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	IC1CON ⁽¹⁾	31:16		—	_	—	—	_				-	_	—			_		0000
2000	1010011	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	IC1BUF	31:16								IC1BUF	<31:0>								xxxx
		15:0												-					xxxx
2200	IC2CON ⁽¹⁾	31:16	—		_	—	—		—		_	—	—	—			—	—	0000
		15:0	ON - SIDL FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>									0000							
2210	IC2BUF	31:16 15:0		IC2BUF<31:0>									xxxx xxxx						
	(1)	31:16	_		_			_		_	_	_	_	_	_	_	_	_	0000
2400	IC3CON ⁽¹⁾	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
		31:16							1 1										xxxx
2410	IC3BUF	15:0								IC3BUF	<31:0>								xxxx
0000	104001(1)	31:16	—	—	—	—	—	—	—	_	—	—	—	_	—	—	_	—	0000
2600	IC4CON ⁽¹⁾	15:0	ON	_	SIDL	_			FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0040		31:16									101.05			•					xxxx
2610	IC4BUF IC4BUF<31:0>										xxxx								
2000		31:16	_	_	_	_	_	_	—	_	—	—	_	_	_	_	—	_	0000
2000	IC5CON ⁽¹⁾	15:0	ON	—	SIDL	—	—	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2810	IC5BUF	31:16								IC5BUF	<31.0>								xxxx
2010	ICODOF	15:0								IC3B0F	-01.02								xxxx

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Control Registers 17.1

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP

ess		<i>a</i>		Bits															
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	—				SPIFE	ENHBUF	0000
5000	SITICON	15:0	ON - SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN DISSDI STXISEL<1:0> SRXISEL<1:0								EL<1:0>	0000							
5810	SPI1STAT	31:16	<u> RXBUFELM<4:0> TXBUFELM<4:0></u>								0000								
3010	011101/1	15:0		—	—	FRMERR	SPIBUSY		—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE		SPITBF	SPIRBF	19EB
5820	SPI1BUF	31:16 15:0		DATA<31:0>								0000							
5830	SPI1BRG	31:16	_	_	—	—	—	—	—	—	—	—	—	—	—	_	—	_	0000
5630	SFIIDKG	15:0		-	_	_	—	_	-					BRG<8:0>					0000
		31:16		—	—		—				_	_	_				_	_	0000
5840	SPI1CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	-	AUDMO)D<1:0>	0000
5A00	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL	_	_				SPIFE	ENHBUF	0000
5A00	0112001	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5A10	SPI2STAT	31:16		—	—			UFELM<4:	0>		—	—	—		TX	BUFELM<4		-	0000
5410	01 120 17 11	15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	19EB
5A20	SPI2BUF	31:16 15:0								DATA<	31:0>								0000
5A30	SPI2BRG	31:16		—	—		—				_	_	_				_	_	0000
5A30		15:0	-	—	—	-	—	—	_					BRG<8:0>					0000
		31:16		—	—		—				_	_	_				_	_	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	-	AUDMO)D<1:0>	0000
5000	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	_				SPIFE	ENHBUF	0000
5C00	SPISCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5010	SPI3STAT	31:16		-	_		RXB	UFELM<4:	0>		—	_	—		TXI	BUFELM<4	:0>		0000
5C10	3F 133 IAI	15:0	-	—	—	FRMERR	SPIBUSY		-	SPITUR	SRMT	SPIROV	SPIRBE	-	SPITBE		SPITBF	SPIRBF	19EB
5C20	SPI3BUF	31:16 15:0								DATA<	31:0>								0000
		31:16	_	—	—	_	—	—	—	—	—	—	—	—	—	_	—	_	0000
5C30	SPI3BRG	15:0	_	_	—	_	_	_	_					BRG<8:0>					0000
Legen																			

All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Note 1: Registers" for more information.

2: This register is only available on 100-pin devices.

REGISTE	ER 18-1: I2CxCON: I ² C 'x' CONTROL REGISTER (CONTINUED)('x' = 1 AND 2)
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

GISTER 20-3. FINIRADDR. FARALLEL FORTI READ ADDRESS REGISTER							
Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_			_	_	-	_
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	-	-	_	_
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RCS2 ⁽¹⁾	RCS1 ⁽³⁾						
RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾			RADDF	<13:82		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RADDR<7:0>							
	31/23/15/7 U-0 U-0 RW-0 RCS2 ⁽¹⁾ RADDR15 ⁽²⁾	31/23/15/7 30/22/14/6 U-0 U-0 — — U-0 U-0 U-0 U-0 RW-0 RW-0 RCS2 ⁽¹⁾ RCS1 ⁽³⁾ RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾	31/23/15/7 30/22/14/6 29/21/13/5 U-0 U-0 U-0 — — — U-0 U-0 U-0 U-0 U-0 U-0 N-0 U-0 U-0 RW-0 RW-0 RW-0 RCS2 ⁽¹⁾ RCS1 ⁽³⁾	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 M-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 M-0 U-0 U-0 U-0 U-0 U-0 N-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RADDR15 ⁽²⁾ RADDR14 ⁽⁴⁾ RW-0 RW-0 RW-0 RW-0 RW-0

REGISTER 20-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	RCS2	Chin	Select 2 bit ⁽¹⁾
	NOOZ.		

- 1 = Chip Select 2 is active
- 0 = Chip Select 2 is inactive (RADDR15 function is selected)
- bit 15 RADDR<15>: Target Address bit 15⁽²⁾
- bit 14 RCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive (RADDR14 function is selected)
- bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 RADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - 2: When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - 4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

31:24 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	-							Bit 24/16/8/0
- - - - - CAL<9:8> 23:16 RW-0 U-0	21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16 CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0	31.24	—	—	_	—	—	—	CAL<9):8>
CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 R/W-0 R-0 SIDL - <td>22.16</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td>	22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8 ON ^(1,2) — SIDL — # # # # # # # #	23.10				CAL<	:7:0>			
ON(1,2) — SIDL — … <th…< td=""><td>15.0</td><td>R/W-0</td><td>U-0</td><td>R/W-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td></th…<>	15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7.0	10.0	ON ^(1,2)	—	SIDL	—	—	—	—	-
^{7.0} RTSECSEL ⁽³⁾ RTCCLKON — RTCWREN ⁽⁴⁾ RTCSYNC HALFSEC ⁽⁵⁾ RTCOE	7.0		-	U-0		-	R-0	R-0	R/W-0
	7:0	RTSECSEL ⁽³⁾	RTCCLKON	_	_	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	l
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is reset only on a Power-on Reset (POR).

23.1 **Control Registers**

TABLE 23-1: CAN1 REGISTER SUMMARY

ess										Bit	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	01000	31:16	_	_	_	_	ABAT	F	REQOP<2:0	>	(OPMOD<2:0	>	CANCAP	_	_	_	_	0480
B000	C1CON	15:0	ON										0000						
B010	C1CFG	31:16	_	_	_		_	_	-			WAKFIL	_	-	-	S	EG2PH<2:0	>	0000
8010	CICFG	15:0	SEG2PHTS										0000						
B020	C1INT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE		_		_		_	_	MODIE	CTMRIE	RBIE	TBIE	0000
0020	01111	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	—	—	—	—	—	—	—	MODIF	CTMRIF	RBIF	TBIF	0000
B030	C1VEC	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
2000		15:0	—		_			FILHIT<4:0>	>						CODE<6:0>				0040
B040	C1TREC	31:16	—	_	_	—	_	_	—	—	—	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
		15:0				TERRC	NT<7:0>							RERRCN	T<7:0>				0000
B050	C1FSTAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
B060	C1RXOVF	31:16 15:0																RXOVF0	0000
		31:16	RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXO CANTS<15:0>							RAUVFU	0000								
B070	C1TMR	15:0							CA	NTSPRE<15									0000
		31:16						SID<10:0>	0A		05				MIDE	_	EID<1	7.16>	xxxx
B080	C1RXM0	15:0						012 110.0		EID<1	5.0>				MIDE			7.10	XXXX
		31:16						SID<10:0>			5.0				MIDE		EID<1	7.16>	xxxx
B090	C1RXM1	15:0						0.0 10.0		EID<1	5.0>						2.0		XXXX
		31:16						SID<10:0>		210 11					MIDE	_	EID<1	7.16>	xxxx
B0A0	C1RXM2	15:0						0.0 10.0		EID<1	5:0>						2.0		XXXX
		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
B0B0	C1RXM3	15:0								EID<1	5:0>						ļ		xxxx
		31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0>	>		FLTEN2	MSEL	2<1:0>		F	SEL2<4:0>			0000
B0C0	C1FLTCON0	15:0	FLTEN1	MSEL	1<1:0>			FSEL1<4:0>	>		FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			0000
	0.151 700114	31:16								0000									
B0D0	C1FLTCON1	15:0								0000									
DOFO		31:16	FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 00							0000									
B0E0	C1FLTCON2	15:0									0000								
B0F0	C1FLTCON3	31:16									0000								
BUFU	GIFLI CONS	15:0	FLTEN13	MSEL1	13<1:0>			FSEL13<4:0	>		FLTEN12	MSEL'	12<1:0>		F	SEL12<4:0>	·		0000
B140	Onoan	31:16	SID<10:0> EXID EID<17:16> xxxx																
040	(n = 0-15)	15:0						aa ara ahawr		EID<1	5:0>								xxxx

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information. Note 1:

		-	-	-	-	•				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R-x	R-x								
31.24				C1FIFOU/	An<31:24>					
23:16	R-x	R-x								
23.10				C1FIFOU/	An<23:16>					
15:8	R-x	R-x								
10.0	C1FIFOUAn<15:8>									
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
7:0	C1FIFOUAn<7:0>									

REGISTER 23-18: C1FIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' ('n' = 0 THROUGH 15)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 C1FIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

REGISTER 23-19: C1FIFOCIn: CAN MODULE MESSAGE INDEX REGISTER 'n' ('n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	_	_	_	_	_	_	_			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	—	—	—	—			
7:0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
7.0	_	_	_		С	1FIFOCIn<4:0)>				

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 C1FIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a transmit buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a receive buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
	EDG2MOD	EDG2POL		EDG2S	_	—		
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ITRIM<5:0>							IRNG<1:0>

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

8			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

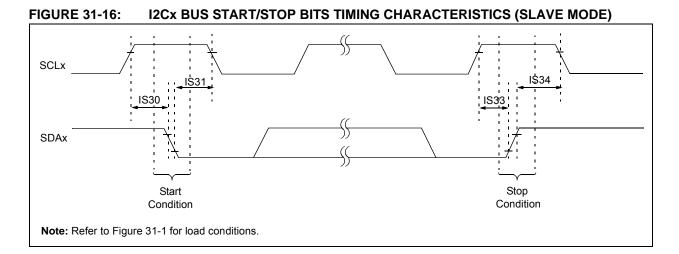
bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

- 1111 = IC4 Capture Event is selected
- 1110 = C2OUT pin is selected
- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

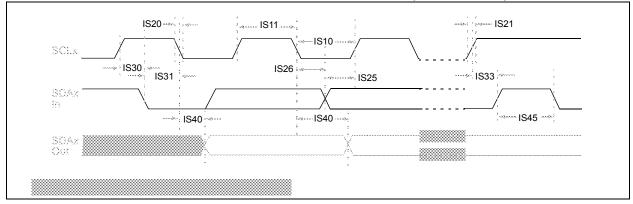
0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source


- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

29.0 INSTRUCTION SET


The PIC32MX1XX/2XX/5XX 64/100-pin family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions		
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)						
MDC34a	9.5	24	mA	50 MHz		

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- + CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions		
Power-Do	own Curren	t (IPD) (Not	e 1)			
MDC40k	50	150	μA	-40°C	Base Power-Down Current	
MDC40n	250	650	μA	+85°C	Base Power-Down Current	
Module D	ifferential C	Current				
MDC41e	15	55	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)	
MDC42e	34	55	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)	
MDC43d	1100	1800	μA	3.6V	ADC: Aladc (Notes 3,4)	

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.

Revision D (April 2016)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-2.

Section Name	Update Description				
1.0 "Device Overview"	Removed the USBOEN pin and all trace-related pins from the Pinout I/O Descriptions (see Table 1-1).				
2.0 "Guidelines for Getting Started	Section 2.7 "Trace" was removed.				
with 32-bit MCUs"	Section 2.10 "Sosc Design Recommendation" was removed.				
3.0 "CPU"	References to the Shadow Register Set (SRS), which is not supported by PIC32MX1XX/2XX/5XX 64/100-pin Family devices, were removed from 3.1 "Features" , 3.2.1 "Execution Unit" , and Coprocessor 0 Registers (Table 3-2).				
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).				
5.0 "Interrupt Controller"	The Single Vector Shadow Register Set (SSO) bit (INTCON<16>) was removed (see Register 5-1).				
10.0 "USB On-The-Go (OTG)"	The UOEMON bit (U1CNFG1<6>) was removed (see Register 10-20).				
23.0 "Controller Area Network (CAN)"	The CAN features (number of messages and FIFOs) were updated. The PIC32 CAN Block Diagram was updated (see Figure 23-1). The following registers were updated: • C1FSTAT (see Register 23-6) • C1RXOVF (see Register 23-7) • C1RXFn (see Register 23-14) • C1FIFOCNn (see Register 23-16) • C1FIFOINTn (see Register 23-17) • C1FIFOUAn (see Register 23-18) • C1FIFOCIn (see Register 23-19) The C1FLTCON4 through C1FLTCON7 registers were removed.				
28.0 "Special Features"					
31.0 "40 MHz Electrical Characteristics"	The EJTAG Timing Characteristics diagram was updated (see Figure 31-23)				

TABLE A-3: MAJOR SECTION UPDATES