

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 5-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 5-1 for the exact bit definitions.

REGISTER 5-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

- 1 = Interrupt is enabled
- 0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 5-1 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	24 RODIV<14:8> ⁽¹⁾									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				RODIV	<7:0> (3)					
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC		
15:8	ON	_	SIDL	OE	RSLP ⁽²⁾	_	DIVSWEN	ACTIVE		
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0 — — — — ROSEL<3:0> ⁽¹⁾										

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable	HS = Hardware Settable	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-16 RODIV<14:0>: Reference Clock Divider bits⁽¹⁾

This value selects the Reference Clock Divider bits. See Figure 8-1 for more information.

- bit 15 **ON:** Output Enable bit
 - 1 = Reference Oscillator Module enabled
 - 0 = Reference Oscillator Module disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Peripheral Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12 **OE:** Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on REFCLKO pin
 - 0 = Reference clock is not driven out on REFCLKO pin
- bit 11 **RSLP:** Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator Module output continues to run in Sleep
 - 0 = Reference Oscillator Module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

TABLE 11-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection				
INT3	INT3R	INT3R<3:0>	0000 = RPD2				
T2CK	T2CKR	T2CKR<3:0>	0010 = RPF4				
IC3	IC3R	IC3R<3:0>					
U1RX	U1RXR	U1RXR<3:0>	0101 = RPB9 0110 = RPB10				
U2RX	U2RXR	U2RXR<3:0>	0111 = RPC14				
U5CTS ⁽³⁾	U5CTSR	U5CTSR<3:0>	1000 = Rr B30 = 10000 = 10000 = 10000 = 100000 = 100000 = 100000 = 100000 = 100000 = 100000 = 100000000				
SDI3	SDI3R	SDI3R<3:0>	$= 1010 = \text{RPC1}^{(3)}$ $1011 = \text{RPD14}^{(3)}$				
SDI4 ⁽³⁾	SDI4R	SDI4R<3:0>					
REFCLKI	REFCLKIR	REFCLKIR<3:0>	1110 = Reserved 1111 = RPF2 ⁽¹⁾				
INT4	INT4R	INT4R<3:0>	0000 = RPD3				
T5CK	T5CKR	T5CKR<3:0>	0010 = RPF5				
IC4	IC4R	IC4R<3:0>	0100 = RPF0 0101 = PPB1				
U3RX	U3RXR	U3RXR<3:0>	0110 = RPE5				
U4CTS	U4CTSR	U4CTSR<3:0>	$\frac{1000 = \text{RPB3}}{1001 = \text{PPE12}(3)}$				
SDI1	SDI1R	SDI1R<3:0>	$\frac{1001 - RP12^{(3)}}{1010 = RPC4^{(3)}}$				
SDI2	SDI2R	SDI2R<3:0>	$\frac{10011 - \text{RPD}(3)}{1100 = \text{RPG}(3)}$				
C1RX ⁽⁵⁾	C1RXR ⁽⁵⁾	C1RXR<3:0> ⁽⁵⁾	$\frac{1101 - RPF2^{(1)}}{1110 = RPF2^{(2)}}$				
INT2	INT2R	INT2R<3:0>	0000 = RPD9				
T4CK	T4CKR	T4CKR<3:0>	0001 = RPG6 0010 = RPB8				
IC2	IC2R	IC2R<3:0>					
IC5	IC5R	IC5R<3:0>	0101 = RPB0 0110 = RPF3				
U1CTS	U1CTSR	U1CTSR<3:0>	0111 = RPB7				
U2CTS	U2CTSR	U2CTSR<3:0>	1000 = Reserved $1001 = \text{RPF12}^{(3)}$				
SS1	SS1R	SS1R<3:0>	1010 = RPD12 ⁽³⁾ 1011 = RPF8 ⁽³⁾				
SS3	SS3R	SS1R<3:0>					
<u> </u>	SS3R	SS3R<3:0>	1110 = RPD14 ⁽³⁾ 1111 = RPB2				

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

TABLE 11-10: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		â								E	Bits								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400		31:16	_	_	_	_	_	—	_		—	—	_	-	-	—	_	_	0000
0400	ANGLEL	15:0	_	—	—	_	_	—	_	_	ANSELE7	ANSELE6	ANSELE5	ANSELE4	-	ANSELE2	—	-	03F4
6410	TRISE	31:16	_	-	_	_		—	-		-	_				_	—	-	0000
0410	INIOL	15:0	—	_	—	—	_	—	_		TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
6420	PORTE	31:16	—	—	—	—	_	—	—	_	—	—	—	-	—	—	—	—	0000
0420	TORTE	15:0	—	_	—	—	—		_	—	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6440	LATE	31:16	—	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
0110	2,112	15:0	—	_	—	—	—	—	_	—	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6440	ODCE	31:16	—	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
0.10	0202	15:0	_	-	—	—	-	—	—	-	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
6450	CNPUE	31:16	_	-	—	—	-	—	—	-	—	—	—	-	—	—	—	—	0000
0.00	0.11 02	15:0	_	—	_	—	—	_	—		CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	0000
6460	CNPDE	31:16	_	_	_	—			_		-	—	—	—	_	—	_	_	0000
		15:0	_	_	_	—			_		CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
6470	CNCONE	31:16	_	_		—	_	—	_			—	_	_	_	—	—	_	0000
		15:0	ON	_	SIDL	—	_	—	_			—	_	_	_	—	—	_	0000
6480	CNENE	31:16	—	_	—	—	_	—	_		-	-	—	—	—		—	—	0000
		15:0	_	—	—	—	—	—	—	—	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
	01107175	31:16	_			—	_				_	_	—	—		—			0000
6490	CNSTATE	15:0	_	_	—	—	—	—	—	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 17-1: SPI1 THROUGH SPI4 REGISTER MAP (CONTINUED)

ess		ē								Bi	ts								s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16		-	_	-	_	_		_	_	_		_		_	_		0000
5C40	SPI3CON2	15:0	SPI SGNEXT	-	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_		AUD MONO	—	AUDMC)D<1:0>	0000
		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:)>	MCLKSEL	—	_	—	_	—	SPIFE	ENHBUF	0000
5E00	SPI4CON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	L<1:0>	0000
FF 40	CDIACTAT(2)	31:16	—	—	—		RXE	BUFELM<4:	0>		—	—	—		TXI	BUFELM<4	:0>		0000
5E10	3F1431A1	15:0	_		_	FRMERR	SPIBUSY	_	-	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	19EB
55.00		31:16									31.05								0000
3E20		15:0								DAIA	01.04								0000
5520	SDIABBC(2)	31:16					—	-		_	—	_		—		_	_		0000
5E30		15:0	_	_	_	_	—	_	_					BRG<8:0>					0000
		31:16					_	-		_	_	_		_		_	_		0000
5E40	SPI4CON2 ⁽²⁾	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_		_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	-	—	—
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/clear	red
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision

- Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
- bit 6 **I2COV:** Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		6									Bits								
Virtual Addr (BF80_#)	(BF80_#	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	PTCCON	31:16		—	—	—		—					CAL<	<9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—		_			RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210		31:16		_	_	—		_			—	_	_	_	—	_	_	—	0000
0210	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARP1	<7:0>				0000
0220	DTOTIME	31:16		HR1	0<3:0>			HR01	<3:0>		MIN10<3:0> MIN01<3:0>				<3:0>		xxxx		
0220	RICHWL	15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		—	—	—	-	—	-	—	—	xx00
0230		31:16		YEAR	10<3:0>			YEAR0	1<3:0>			MONTH10)<3:0>		MONTH01<3:0>				xxxx
0230	RICDAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	—	—	-		WDAY0	1<3:0>		xx00
0240		31:16		HR1	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	—	_	_	—	xx00
0250		31:16	-	_	—	—		—	-	-		MONTH10)<3:0>			MONTH	01<3:0>		00xx
0250		15:0		DAY1	0<3:0>			DAY01	<3:0>		_	_	—	_		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		ø								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
9100	ADC1BUF9	31:16		ADC Result Word 9 (ADC1BUF9<31:0>)															
		15:0		0000															
9110	ADC1BUFA	31:16		ADC Result Word A (ADC1BUFA<31:0>)															
		15.0																	
9120	ADC1BUFB	15.0		ADC Result Word B (ADC1BUFB<31:0>)								0000							
		31.16																	0000
9130	ADC1BUFC	15:0							ADC Res	sult Word C	(ADC1BUF	C<31:0>)							0000
		31:16																	0000
9140	ADC1BUFD	15:0							ADC Res	sult Word D	(ADC1BUF	D<31:0>)							0000
0450		31:16										(F +2)(+0)							0000
9150	ADCIBUFE	15:0							ADC Res	Suit WOrd E	(ADC TBUF	⊑≦31:0≥)							0000
9160		31:16										E<31.05)							0000
9100	ADGIBUFF	15:0							ADC Res			1 ~51.02)							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for details.

2: For 64-pin devices, the MSB of these bits is not available.

3: For 64-pin devices, only the CSSL30:CSSL0 bits are available.

NOTES:

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	FLTEN11 MSEL11<1:0>			FSEL11<4:0>							
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	FLTEN10	MSEL1	0<1:0>		F	SEL10<4:0>					
15:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	FLTEN9	MSEL9<1:0>		FSEL9<4:0>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	FLTEN8	MSEL	8<1:0>	FSEL8<4:0>							

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL11<4:0>: FIFO Selection bits
	11111 = Reserved
	•
	•
	• 10000 - Reserved
	01111 = Message matching filter is stored in EIEO buffer 15
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
51.24	SID<10:3>										
22:16	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x			
23.10		SID<2:0>		—	EXID	—	EID<1	17:16>			
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
10.0	EID<15:8>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0				EID<	<7:0>						

REGISTER 23-14: C1RXFn: CAN ACCEPTANCE FILTER 'n' REGISTER ('n' = 0 THROUGH 15)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

25.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The CVREF module has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

	Indicates the status of Edge 1 and can be written to control edge source
	1 - Edge 1 has accurred
	0 = Edge 1 has not occurred
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit
511 20	1 = Input is edge-sensitive
	0 = Input is level-sensitive
bit 22	EDG2POL: Edge 2 Polarity Select bit
	1 = Edge 2 programmed for a positive edge response
	0 = Edge 2 programmed for a negative edge response
bit 21-18	EDG2SEL<3:0>: Edge 2 Source Select bits
	1111 = IC4 Capture Event is selected
	1110 = C2OUT pin is selected
	1101 = C1OUT pin is selected
	1100 = PBCLK clock is selected
	1011 = IC3 Capture Event is selected
	1010 = IC2 Capture Event is selected
	1001 = ICT Capture Event is selected
	0111 = CTED12 nin is selected
	0110 = CTED11 pin is selected
	0101 = CTED10 pin is selected
	0100 = CTED9 pin is selected
	0011 = CTED1 pin is selected
	0010 = CTED2 pin is selected
	0001 = OC1 Compare Event is selected
h# 47 40	Unimplemented, Deed es (2)
	Onimplemented: Read as 0
DIC 15	
	1 = Module is enabled
hit 11	U = Module is disabled
DIL 14	CTMUSIDI - Stan in Idla Mada hit
DIC 13	CIMUSIDE: Stop in idle Mode bit
	\perp = Discontinue module operation when device enters falle mode
hit 10	Continue module operation in fulle mode
DICIZ	
	\perp = Enables edge delay generation
bit 11	0 - Disables edge delay generation
	0 = Edges are blocked
Note 1:	When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
2:	The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

- 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
- 4: This bit setting is not available for the CTMU temperature diode.

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA	RACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5	_	25	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20	—	_	ns	_		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	25	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

АС СНА	RACTERIS	STICS		Standard Op (unless other Operating te	erating (rwise sta mperatu	Conditio ated) re -40° -40°	ons: 2.3V to 3.6V $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $^{\circ}C \le TA \le +105^{\circ}C$ for V-temp
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	_	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	_	μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	_	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode (Note 1)	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode (Note 1)	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode (Note 1)	100	_	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode (Note 1)	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	—	ns	Start condition
			1 MHz mode (Note 1)	250	_	ns	
IS31	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first
		Hold Time	400 kHz mode	600	_	ns	clock pulse is generated
			1 MHz mode (Note 1)	250	—	ns	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	—	ns	_
		Setup Time	400 kHz mode	600	—	ns]
			1 MHz mode (Note 1)	600		ns	

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		Standard Operating te	perating Conditions: 2.3V to 3.6V erwise stated) mperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions				
Idle Current (II	DLE): Core Of	f, Clock on E	Base Current	(Note 1)				
MDC34a	9.5	24	mA	mA 50 MHz				

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHAF	RACTERIST	ïcs	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions								
Power-Do	Power-Down Current (IPD) (Note 1)											
MDC40k	50	150	μA	-40°C								
MDC40n	250	650	μA	+85°C	Base Power-Down Current							
Module D	oifferential (Current										
MDC41e	15	55	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)							
MDC42e	34	55	μA	3.6V RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3								
MDC43d	1100	1800	μA	3.6V ADC: ΔІАDC (Notes 3,4)								

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			5.50
Optional Center Pad Length	T2			5.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A