

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx570f512lt-50i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	
IADLE I-I.	FINUUT I/U DESCRIFTIONS	CONTINUED)

	Pin N	umber			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description
INT0	35 ⁽¹⁾ , 46 ⁽²⁾	55 ⁽¹⁾ , 72 ⁽²⁾	I	ST	External Interrupt 0
INT1	PPS	PPS	Ι	ST	External Interrupt 1
INT2	PPS	PPS	Ι	ST	External Interrupt 2
INT3	PPS	PPS	Ι	ST	External Interrupt 3
INT4	PPS	PPS	Ι	ST	External Interrupt 4
RA0	_	17	I/O	ST	
RA1	_	38	I/O	ST	
RA2	—	58	I/O	ST	
RA3	—	59	I/O	ST	1
RA4	_	60	I/O	ST	1
RA5	_	61	I/O	ST	
RA6	_	91	I/O	ST	PORTA is a bidirectional I/O port
RA7	_	92	I/O	ST	
RA9	_	28	I/O	ST	
RA10	_	29	I/O	ST	
RA14	_	66	I/O	ST	
RA15		67	I/O	ST	
RB0	16	25	I/O	ST	
RB1	15	24	I/O	ST	
RB2	14	23	I/O	ST	
RB3	13	22	I/O	ST	
RB4	12	21	I/O	ST	
RB5	11	20	I/O	ST	
RB6	17	26	I/O	ST	1
RB7	18	27	I/O	ST	
RB8	21	32	I/O	ST	PORTB is a bidirectional I/O port
RB9	22	33	I/O	ST	1
RB10	23	34	I/O	ST	1
RB11	24	35	I/O	ST	1
RB12	27	41	I/O	ST	1
RB13	28	42	I/O	ST	1
RB14	29	43	I/O	ST	1
RB15	30	44	I/O	ST	1
Legend: (CMOS = CN	IOS compati t Trigger inpl	ble inpu	it or output	Analog = Analog input I = Input O = Output Is TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Number								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description				
RF0	58	87	I/O	ST					
RF1	59	88	I/O	ST	1				
RF2	34 ⁽³⁾	52	I/O	ST					
RF3	33	51	I/O	ST	1				
RF4	31	49	I/O	ST	1				
RF5	32	50	I/O	ST	PORTF is a bidirectional I/O port				
RF6	35 ⁽¹⁾	55 ⁽¹⁾	I/O	ST					
RF7		54 (4)	I/O	ST	1				
RF8		53	I/O	ST	1				
RF12		40	I/O	ST					
RF13	_	39	I/O	ST					
RG0	_	90	I/O	ST					
RG1	_	89	I/O	ST					
RG2	37 ⁽¹⁾	57 ⁽¹⁾	I/O	ST					
RG3	36 ⁽¹⁾	56 ⁽¹⁾	I/O	ST					
RG6	4	10	I/O	ST					
RG7	5	11	I/O	ST	BORTC is a hidiractional I/O part				
RG8	6	12	I/O	ST	PORTG is a bidirectional I/O port				
RG9	8	14	I/O	ST					
RG12	_	96	I/O	ST					
RG13		97	I/O	ST					
RG14		95	I/O	ST					
RG15		1	I/O	ST					
T1CK	48	74	Ι	ST	Timer1 External Clock Input				
T2CK	PPS	PPS	I	ST	Timer2 External Clock Input				
T3CK	PPS	PPS	I	ST	Timer3 External Clock Input				
T4CK	PPS	PPS	Ι	ST	Timer4 External Clock Input				
T5CK	PPS	PPS	Ι	ST	Timer5 External Clock Input				
U1CTS	PPS	PPS	Ι	ST	UART1 Clear to Send				
U1RTS	PPS	PPS	0		UART1 Ready to Send				
U1RX	PPS	PPS	Ι	ST	UART1 Receive				
U1TX	PPS	PPS	0		UART1 Transmit				
U2CTS	PPS	PPS	Ι	ST	UART2 Clear to Send				
U2RTS	PPS	PPS	0		UART2 Ready to Send				
U2RX	PPS	PPS	Ι	ST	UART2 Receive				
U2TX	PPS	PPS	0	_	UART2 Transmit				

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

TABLE 5-2: INTERRUPT REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Address (BF88_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1050	IPC5	31:16	_		_	A	01IP<2:0>		AD1IS	i<1:0>			-		OC5IP<2:02	>	OC5IS	S<1:0>	0000
10E0	IPC5	15:0	—		—	IC	5IP<2:0>		IC5IS	<1:0>			—		T5IP<2:0>		T5IS	<1:0>	0000
1050	IPC6	31:16	_		_	CM	CMP1IP<2:0> (CMP1	S<1:0>		-	_		FCEIP<2:0	>	FCEIS	S<1:0>	0000
10F0	IPC0	15:0	—		—	RT	RTCCIP<2:0>		RTCCI	S<1:0>			—	FSCMIP<2:0>		FSCMIS<1:0>		0000	
1100	IPC7	31:16	—		—	U	U1IP<2:0>		U1IS<1:0>				—	SPI1IP<2:0>		SPI1IS<1:0>		0000	
1100	IPC/	15:0	_		—	USI	USBIP<2:0> ⁽²⁾		USBIS<1:0> ⁽²⁾ — — — CMP2IP<2:0>		>	CMP2IS<1:0>		0000					
1110	IPC8	31:16	—		—	SF	PI2IP<2:0>		SPI2IS<1:0>				—	PMPIP<2:0>		PMPIS<1:0>		0000	
1110	IPCo	15:0	—		—	С	NIP<2:0>		CNIS<1:0>		—	—	—	I2C1IP<2:0>		I2C1IS<1:0>		0000	
1120	IPC9	31:16	_	_	—	U	4IP<2:0>		U4IS-	<1:0>	—	—	_	U3IP<2:0>			U3IS	<1:0>	0000
1120	IF C9	15:0	_	_	—	120	C2IP<2:0>		I2C2IS<1:0>		_	—	—	U2IP<2:0>		U2IS	<1:0>	0000	
1130	IPC10	31:16	_	_	_	DM	IA1IP<2:0>	•	DMA1	S<1:0>	-	_	_	DMA0IP<2:0>		>	DMA0I	S<1:0>	0000
1130	IFCIU	15:0	_	_	_	CT	MUIP<2:0>	•	CTMUIS<1:0> — — — U5IP<2:0>			U5IS	<1:0>	0000					
1140	IPC11	31:16	—		—	CA	CANIP<2:0> ⁽⁵⁾		CANIS<1:0>		—	—	—		CMP3IP<2:0	>	CMP3IS<1:0>		0000
1140	IFCII	15:0 — — — DMA3IP<2:0>		•	DMA3IS<1:0>		_	—	_	DMA2IP<2:0>		DMA2IS<1:0>		0000					
1150	IPC12	31:16	—	—	—	—	—	_	—	—	_	_	—	—		_	—		0000
1150	IFC12	15:0	—		—	SP	4P<2:0>(1))	SPI4S<	:1:0> (1)	—	—	—		SPI3P<2:0>	•	SPI35	S<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

3: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

4: This register does not have associated CLR, SET, and INV registers.

5: This bit is only implemented on devices with a CAN module.

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX1XX/2XX/5XX 64/100-pin devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX1XX/2XX/5XX 64/100-pin devices, the Flash page size is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively). NOTES:

REGISTE	REGISTER 9-8: DCHXECON: DMA CHANNEL 'X' EVENT CONTROL REGISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	_	—		
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	CHAIRQ<7:0> ⁽¹⁾									
15:0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
15:8	CHSIRQ<7:0> ⁽¹⁾									
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_				

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 **~** d · ~ '

bit 31-24	Unimplemented: Read as '0'
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer
	0000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	2 Dettern weetsk is dischlad

- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 5-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

INE OID IE	LEGISTER 9-12. DETROSSIZ. DIVIA CHANNEL X SOURCE SIZE REGISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_	_	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	_	—	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHSSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHSSIZ	<7:0>					

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	—	_	_	—	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	_	—	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHDSIZ<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHDSIZ	<7:0>					

Legend:				
R = Readable bit	le bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	-	-	-		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-	-	-	-		—
7:0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
7:0	UTEYE	_	_	USBSIDL	USBSIDL		_	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 UTEYE: USB Eye-Pattern Test Enable bit
 - 1 = Eye-Pattern Test enabled
 - 0 = Eye-Pattern Test disabled

bit 6-5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3 LSDEV: Low-Speed Device Enable bit

- 1 = USB module operates in Low-Speed Device mode only
- 0 = USB module operates in OTG, Host, or Full-Speed Device mode
- bit 2-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

11.4 Control Registers

TABLE 11-3: PORTA REGISTER MAP 100-PIN DEVICES ONLY

-																			
ress)	N .	Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	_	_	_	—	—	—	—	_	—	—	—		—		I	—	0000
0000	ANGELA	15:0	_	—	_	—	—	ANSELA10	ANSELA9	—	—	_	_		_	_		_	0060
6010	TRISA	31:16	_	—	_	—	—	—	—	—	—	_	_		—	_		_	0000
0010	INISA	15:0	TRISA15	TRISA14	—	—	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6020 PORTA		31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0020	FURIA	15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0030	LAIA	15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
0040		15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	_	—	_	—	_	—	—	_	—	—	—	-	—	_	_	—	0000
0000		15:0	CNPUA15	CNPUA14	—	—	_	CNPUA10	CNPUA9	—	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	_	—	_	_	_	_	—	_	_			_		_			0000
0000		15:0	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
0010		15:0	ON	—	SIDL	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
6080	CNENA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	ONEN	15:0	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
		31:16	_	—	_	—	—	—	—	_	—	—	—	_	—	—	_	—	0000
6090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	_	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

	LE 19-1:	UAI	(11 THROUGH UARTS REGISTER MAP (CONTINUED)																
ess		đ								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6440		31:16	_	—	—		—		—	—		—	_		_	_	_		0000
0440	USBRG. /	15:0														0000			
6600	U4MODE ⁽¹⁾	31:16	_	_	_		_		_	_		—	_		_	_	_		0000
0000	04IVIODL.	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6610	U4STA ⁽¹⁾	31:16	_	—	—	-	—	_	—	ADM_EN				ADDF	R<7:0>		-		0000
0010	04017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620	U4TXREG	31:16	—		—	_	_	_		—		—	—	_	—	—	—	—	0000
0020	OFINICO	15:0	—		—	_	_	_		TX8	Transmit Register			0000					
6630	U4RXREG	31:16	—		—	_	_	_		_		—	_	_	_	_	_	—	0000
0000	OHIVILO	15:0	—		—	_	_	_		RX8	3 Receive Register						0000		
6640	U4BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	U IBIKO	15:0							Bau	d Rate Gen	erator Pres	caler							0000
6800	U5MODE ^(1,2)	31:16		—	—		—	_	—			—	—		—	—	—		0000
	00111022	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6810	U5STA ^(1,2)	31:16	—	—	—	—	—	—	—	ADM_EN				1	R<7:0>	1	1	1	0000
		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG ^(1,2)	31:16	_		—	_	—				_	—	—	—		—			0000
		15:0	_		—	_	—			TX8				Transmit	Register				0000
6830	U5RXREG ^(1,2)	31:16	_		—	—	—			—	—	—	—	—	—	—	—	—	0000
		1010	—		—	—	—			RX8				Receive	Register				0000
6840	U5BRG ^(1,2)	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
		15:0					'o' Booot			d Rate Gene	erator Pres	caler							0000

TABLE 19-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register is only available on 100-pin devices.

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		HR10	<3:0>			HR01	<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MIN10	<3:0>		MIN01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		SEC10	<3:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	_	_	_	_	_	_	_	_		
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'			

REGISTER 21-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

'1' = Bit is set

-n = Value at POR

REGISTE	R 23-3:	C1INT: CAN INTERRUPT REGISTER (CONTINUED)
bit 14	1 = A bus	CAN Bus Activity Wake-up Interrupt Flag bit s wake-up activity interrupt has occurred s wake-up activity interrupt has not occurred
bit 13	1 = A CAI	CAN Bus Error Interrupt Flag bit N bus error has occurred N bus error has not occurred
bit 12	SERRIF:	System Error Interrupt Flag bit ⁽¹⁾
		tem error occurred (typically an illegal address was presented to the system bus) tem error has not occurred
bit 11	RBOVIF:	Receive Buffer Overflow Interrupt Flag bit
		eive buffer overflow has occurred eive buffer overflow has not occurred
bit 10-4	Unimpler	mented: Read as '0'
bit 3	MODIF: 0	CAN Mode Change Interrupt Flag bit
		N module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) N module mode change has not occurred
bit 2	CTMRIF:	CAN Timer Overflow Interrupt Flag bit
		N timer (CANTMR) overflow has occurred N timer (CANTMR) overflow has not occurred
bit 1	RBIF: Re	ceive Buffer Interrupt Flag bit
		eive buffer interrupt is pending eive buffer interrupt is not pending
bit 0	TBIF: Tra	nsmit Buffer Interrupt Flag bit
	1 = A tran	nsmit buffer interrupt is pending

- 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (C1CON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
10.0	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>	_	CREF	_		CCH	<1:0>

REGISTER 24-1: CMxCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

bit 4 **CREF:** Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin

bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Comparator 3	CMP3MD	PMD2<2>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
2C1	I2C1MD	PMD5<16>
2C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
CAN	CAN1MD	PMD5<28>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

 Note 1:
 Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
R	R	R	R	R	R	R	R			
	VER<	:3:0> ⁽¹⁾			DEVID<27	7:24> ⁽¹⁾				
R	R	R	R	R	R	R	R			
DEVID<23:16> ⁽¹⁾										
R	R	R	R	R	R	R	R			
			DEVID<	15:8> ⁽¹⁾						
R	R	R	R	R	R	R	R			
DEVID<7:0> ⁽¹⁾										
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R R R R R R R R R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ VER<	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R			

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logonan						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	RACTERIST	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	—	_	ns	_			
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_			
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32			
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	-	ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	-	ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V			
	TscL2doV	SCKx Edge	_	—	20	ns	VDD < 2.7V			
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	_			
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 31-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5	_	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тѕск + 20	—	_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	25	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

32.0 50 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX/5XX 64/100-pin Family electrical characteristics for devices operating at 50 MHz.

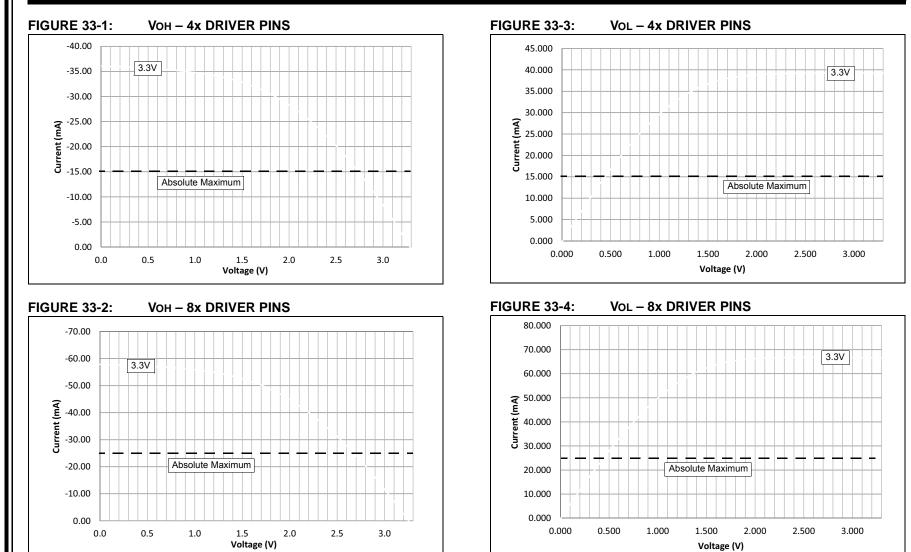
The specifications for 50 MHz are identical to those shown in **Section 31.0 "40 MHz Electrical Characteristics"**, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 50 MHz operation. For example, parameter DC29a in **Section 31.0** "40 MHz Electrical Characteristics", is the up to 40 MHz operation equivalent for MDC29a.

Absolute maximum ratings for the PIC32MX1XX/2XX/5XX 64/100-pin Family 50 MHz devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)


Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MX1XX/2XX/5XX 64/100-PIN FAMIL

© 2014-2016 Microchip Technology Inc