

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 12x14b; D/A 4x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c29566-24axit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many Programmable System-on-Chip controller devices. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based system components with one, low-cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, as well as programmable interconnects. This architecture allows you to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

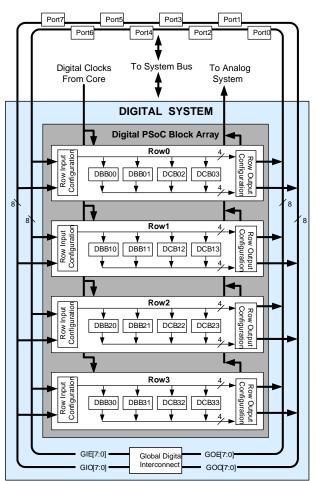
The PSoC architecture, as illustrated in the Logic Block Diagram on page 1, consists of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global busing allows all of the device resources to be combined into a complete custom system. The PSoC CY8C29x66 family can have up to five I/O ports that connect to the global digital and analog interconnects, providing access to 8 digital blocks and 12 analog blocks.

PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIOs.

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a 4 million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with 17 vectors, to simplify programming of real-time embedded events. Program execution is timed and protected using the included sleep and watchdog timers (WDT).

Memory uses 32 KB of flash for program storage, 2 KB of SRAM for data storage, and up to 2 KB of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software information protection (IP).


The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 5% ^[2] over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low-power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. If crystal accuracy is desired, the 32.768 kHz external crystal oscillator (ECO) is available for use as a real-time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, and digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

Digital System

The digital system is composed of 16 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules.

Note

^{2.} Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above 70 °C), frequency tolerance deviates from ±2.5% to ±5%. For more information, see Errata on page 63.

Designing with PSoC Designer

The development process for the PSoC[®] device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules

make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

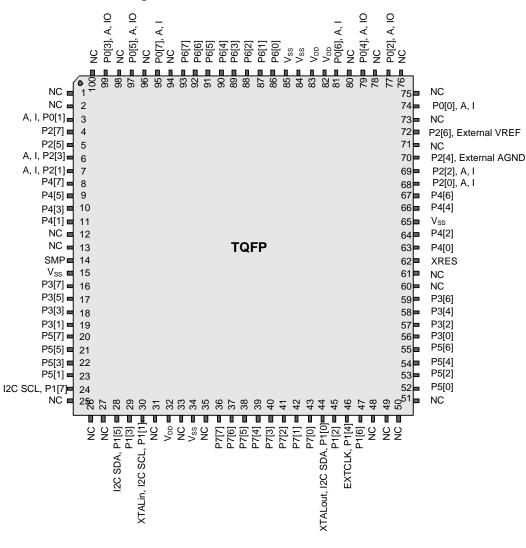
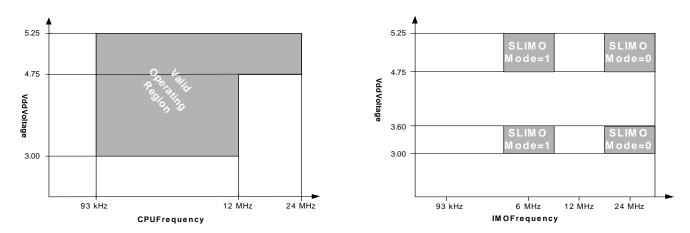


Figure 8. CY8C29866 100-Pin PSoC Device


Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C29x66 PSoC device. For the most up-to-date electrical specifications, confirm that you have the most recent datasheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Refer to Table 29 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.

Figure 10. Voltage versus CPU Frequency

Figure 11. IMO Frequency Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 11. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Unit	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temper- ature is +25 °C ± 25 °C. Extended duration storage temperatures higher than 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
T _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	_	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tristate	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	-	V	Human body model ESD.
LU	Latch-up current	-	_	200	mA	

Table 16. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low	- - -	1.4 1.4 1.4	10 10 10	mV mV mV	Power = High, Opamp bias = High setting is not allowed for $3.3 \text{ V} \text{V}_{\text{DD}}$ operation.
	Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - -	1.4 1.4 -	10 10 -	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	7	40	µV/°C	
EBOA	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
СМОА	Common mode voltage range	0	_	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common mode rejection ratio	60	-	-	dB	
G _{OLOA}	Open loop gain	80	-	-	dB	
V _{OHIGHOA}	High output voltage swing (internal signals)	V _{DD} – 0.01	-	-	V	
V _{OLOWOA}	Low output voltage swing (internal signals)	-	-	0.01	V	
I _{SOA}	Supply current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 –	μΑ μΑ μΑ μΑ μΑ	Power = High, Opamp bias = High setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	54	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD} - 2.25) \text{ or} \\ (V_{DD} - 1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$

DC Low-Power Comparator Specifications

Table 17 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C $\leq T_A \leq 85$ °C, 3.0 V to 3.6 V and –40 °C $\leq T_A \leq 85$ °C, or 2.4 V to 3.0 V and –40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 17.	DC Low-Power	Comparator	Specifications
-----------	--------------	------------	----------------

Symbol	Description	Min	Тур	Max	Unit
V _{REFLPC}	Low-power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1	V
I _{SLPC}	LPC supply current	-	10	40	μΑ
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV

DC Analog Output Buffer Specifications

Table 18 and Table 19 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 18.	5-V DC Analog	g Output Buffer	Specifications
-----------	---------------	-----------------	----------------

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOB}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - -	3.2 3.2 3.2 3.2 3.2	18 18 18 18 18	mV mV mV mV	
TCV _{OSOB}	Average input offset voltage drift	-	5.5	26	µV/°C	
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = Low Power = High			1 1	$\Omega \Omega$	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High	0.5 × V _{DD} + 1.3 0.5 × V _{DD} + 1.3			V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High			0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	
I _{SOB}	Supply current including bias cell (no load) Power = Low Power = High		1.1 2.6	2 5	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	40	64		dB	
CL	Load capacitance	-	-	200	pF	This specification applies to the external circuit driven by the analog output buffer.

Table 22. 3.3-V DC Analog Reference Specifications

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Unit
		V _{REFHI}	Ref High	V _{DD} /2 + Band- Gap	V _{DD} /2 + 1.225	V _{DD} /2 + 1.292	V _{DD} /2 + 1.361	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.067	V _{DD} /2 – 0.002	V _{DD} /2 + 0.063	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Band- Gap	V _{DD} /2 – 1.35	V _{DD} /2 – 1.293	V _{DD} /2 – 1.210	V
		V _{REFHI}	Ref High	V _{DD} /2 + Band- Gap	V _{DD} /2 + 1.218	V _{DD} /2 + 1.294	V _{DD} /2 + 1.370	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.038	V _{DD} /2 – 0.001	V _{DD} /2 + 0.035	V
01-000		V _{REFLO}	Ref Low	V _{DD} /2 – Band- Gap	V _{DD} /2 – 1.329	V _{DD} /2 – 1.296	V _{DD} /2 – 1.259	V
06000	RefPower = Med Opamp bias = High	V _{REFHI}	Ref High	V _{DD} /2 + Band- Gap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.294	V _{DD} /2 + 1.366	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.050	V _{DD} /2 – 0.002	V _{DD} /2 + 0.046	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Band- Gap	V _{DD} /2 – 1.331	V _{DD} /2 – 1.296	V _{DD} /2 – 1.260	V
		V _{REFHI}	Ref High	V _{DD} /2 + Band- Gap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.295	V _{DD} /2 + 1.365	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.028	V _{DD} /2 – 0.001	V _{DD} /2 + 0.025	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Band- Gap	V _{DD} /2 – 1.329	V _{DD} /2 – 1.297	V _{DD} /2 – 1.262	V

Table 22. 3.3-V DC Analog Reference Specifications (continue)	ued)
---	------

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	V _{DD}	V _{DD} - 0.06	V _{DD} – 0.010	V _{DD}	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.05	V _{DD} /2 – 0.002	V _{DD} /2 + 0.040	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.009	Vss + 0.056	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} - 0.060	V _{DD} – 0.006	V _{DD}	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.028	V _{DD} /2 – 0.001	V _{DD} /2 + 0.025	V
0b010		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.034	V
01000		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.058	V _{DD} – 0.008	V _{DD}	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.037	V _{DD} /2 – 0.002	V _{DD} /2 + 0.033	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.046	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.057	V _{DD} – 0.006	V _{DD}	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.025	V _{DD} /2 – 0.001	V _{DD} /2 + 0.022	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.004	Vss + 0.030	V
0b011	All power settings. Not allowed for 3.3 V	-	-	_	_	_	_	-
0b100	All power settings. Not allowed for 3.3 V	-	_	_	_	_	_	-

Table 22. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Unit
		V _{REFHI}	Ref High	P2[4] + Band- Gap (P2[4] = V _{DD} /2)	P2[4] + 1.213	P2[4] + 1.291	P2[4] + 1.367	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Band- Gap (P2[4] = V _{DD} /2)	P2[4] – 1.333	P2[4] – 1.294	P2[4] – 1.208	V
		V _{REFHI}	Ref High	P2[4] + Band- Gap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.368	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Band- Gap (P2[4] = V _{DD} /2)	P2[4] – 1.320	P2[4] – 1.296	P2[4] – 1.261	V
0b101		V _{REFHI}	Ref High	P2[4] + Band- Gap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.369	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Band- Gap (P2[4] = V _{DD} /2)	P2[4] – 1.322	P2[4] – 1.297	P2[4] – 1.262	V
		V _{REFHI}	Ref High	P2[4] + Band- Gap (P2[4] = V _{DD} /2)	P2[4] + 1.219	P2[4] + 1.295	P2[4] + 1.37	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Band- Gap (P2[4] = V _{DD} /2)	P2[4] – 1.324	P2[4] – 1.297	P2[4] – 1.262	V
		V _{REFHI}	Ref High	2 × BandGap	2.507	2.598	2.698	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	BandGap	1.203	1.307	1.424	V
	opanip blac – riigh	V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.012	Vss + 0.067	V
		V _{REFHI}	Ref High	2 × BandGap	2.516	2.598	2.683	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	BandGap	1.241	1.303	1.376	V
01.440		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.040	V
0b110		V _{REFHI}	Ref High	2 × BandGap	2.510	2.599	2.693	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	BandGap	1.240	1.305	1.374	V
	- partie and - ringh	V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.008	Vss + 0.048	V
		V _{REFHI}	Ref High	2 × BandGap	2.515	2.598	2.683	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	BandGap	1.258	1.302	1.355	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.03	V
0b111	All power settings. Not allowed for 3.3 V.	-	-	-	-	-	-	-

DC Analog External Reference Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 23. 5-V DC Analog External Reference Specifications

Reference	Description	Min	Тур	Мах	Unit
Ref Low	Ref Low = $P2[4] - P2[6]$ ($P2[4] = V_{CC}/2$, $P2[6] = 1.3$ V)	1.12	1.221	1.28	V
AGND	$AGND = P2[4] (P2[4] = V_{CC}/2)$	2.487	2.499	2.513	V
Ref High	Ref Low = P2[4] + P2[6] (P2[4] = V _{CC} /2, P2[6] = 1.3 V)	3.67	3.759	3.93	V

Table 24. 3.3-V DC Analog External Reference Specifications

Reference	Description	Min	Тур	Max	Unit
Ref Low	Ref Low = P2[4] – P2[6] (P2[4] = V _{CC} /2, P2[6] = 1.3 V)	0.29	0.371	0.41	V
AGND	$AGND = P2[4] (P2[4] = V_{CC}/2)$	1.642	1.649	1.658	V
Ref High	Ref Low = P2[4] + P2[6] (P2[4] = V _{CC} /2, P2[6] = 1.3 V)	_	2.916	_	V

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 85$ °C, or 3.0 V to 3.6 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
R _{CT}	Resistor unit value (continuous time)	_	12.2	-	kΩ	
C _{SC}	Capacitor unit value (switch cap)	-	80	-	fF	

DC POR, SMP, and LVD Specifications

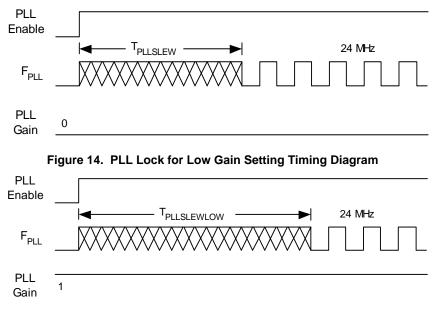
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0

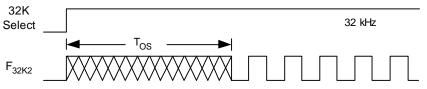
V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26. DC POR, SMP, and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	V_{DD} value for PPOR trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.91 4.39 4.55	-	>>>	
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V_{DD} value for PPOR trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.39 4.55	_	V V V	
V _{PH0} V _{PH1} V _{PH2}	PPOR hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b		92 0 0		mV mV mV	
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	2.98 ^[16] 3.08 3.20 4.08 4.57 4.74 ^[17] 4.82 4.91	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \mbox{ value for SMP trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 101b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$	2.96 3.03 3.18 4.11 4.55 4.63 4.72 4.90	3.02 3.10 3.25 4.19 4.64 4.73 4.82 5.00	3.08 3.16 3.32 4.28 4.74 4.82 4.91 5.10	V V V V V V V	

Notes


Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.


Table 29. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up
T _{POWERUP} ^[25]	Time from end of POR to CPU executing code	_	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual
tjit_IMO ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	N = 32
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900		
	24 MHz IMO period jitter (RMS)	-	100	400		
tjit_PLL ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	800	ps	N = 32
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1200]	
	24 MHz IMO period jitter (RMS)	-	100	700	1	

Notes

 ^{25.} Errata: When V_{DD} of the device is pulled below ground just before power-on; the first read from each 8K Flash bank may be corrupted apart from Flash bank 0. This can be solved by doing a dummy read from each Flash bank prior to use of the Flash banks. For more information, see Errata on page 63.
26. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 34. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Unit	Notes			
All functions	Block input clock frequency								
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz				
	V _{DD} < 4.75 V	-	_	25.2	MHz				
Timer	Input clock frequency				•				
	No capture, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz				
	No capture, V _{DD} < 4.75 V	-	-	25.2	MHz				
	With capture	-	-	25.2	MHz				
	Capture pulse width	50 ^[27]	-	-	ns				
Counter	Input clock frequency				•				
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz				
	No enable input, V _{DD} < 4.75 V	-	-	25.2	MHz				
	With enable input	-	-	25.2	MHz				
	Enable input pulse width	50 ^[27]	-	-	ns				
Dead Band	Kill pulse width				•				
	Asynchronous restart mode	20	-	-	ns				
	Synchronous restart mode	50 ^[27]	-	-	ns				
	Disable mode	50 ^[27]	-	-	ns				
	Input clock frequency								
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz				
	V _{DD} < 4.75 V	-	-	25.2	MHz				
CRCPRS	Input clock frequency								
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz				
	V _{DD} < 4.75 V	_	-	25.2	MHz				
CRCPRS (CRC Mode)	Input clock frequency	-	-	25.2	MHz				
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2			
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode			
	Width of SS_negated between transmissions	50 ^[27]	-	-	ns				
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency			
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	divided by 8			
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz				
	V _{DD} < 4.75 V	_	-	25.2	MHz]			
Receiver	Input clock frequency				•	The baud rate is equal to the input clock frequency			
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	divided by 8			
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	1			
	V _{DD} < 4.75 V	-	-	25.2	MHz	1			

Note 27.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

Table 38. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Unit
FOSCEXT	Frequency with CPU clock divide by 1	0.093	-	12.3	MHz
FOSCEXT	Frequency with CPU clock divide by 2 or greater	0.186	-	24.6	MHz
-	High period with CPU clock divide by 1	41.7	-	5300	ns
-	Low period with CPU clock divide by 1	41.7	-	_	ns
_	Power-up IMO to switch	150	-	-	μs

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 39. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20 ns –		
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	-
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	-
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	-
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	-
t _{ERASEB}	Flash erase time (block)	-	10	-	ms	-
t _{WRITE}	Flash block write time	-	40	-	ms	-
t _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{ERASEALL}	Flash erase time (Bulk)	-	80	-	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + Flash block write time	-	-	100 ^[28]	ms	$0~^{\circ}C \leq Tj \leq 100~^{\circ}C$
t _{PROGRAM_COLD}	Flash block erase + Flash block write time	-	-	200 ^[28]	ms	$-40~^\circ C \le Tj \le 0~^\circ C$

Note 28. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

Development Tool Selection

This section presents the development tools available for all current PSoC device families including the CY8C29x66 family.

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools can be purchased from the Cypress online store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and example projects CD
- Getting Started guide
- Wire pack

Document Conventions

Units of Measure

Table 46 lists the unit sof measures.

Table 46. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
dB	decibels	ms	millisecond
°C	degree Celsius	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolts
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nanovolts
kΩ	kilohm	V	volts
Ω	ohm	μW	microwatts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	ppm	parts per million
pА	pikoampere	%	percent
μs	microsecond		·

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimals.

Glossary

active high	1. A logic signal having its asserted state as the logic 1 state.
	2. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	1. The frequency range of a message or information processing system measured in hertz.
	The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Errata

This section describes the errata for the PSoC Programmable System-on-Chip, CY8C29xxx family of devices. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
CY8C29xxx	CY8C29466-24PXI
	CY8C29466-24PVXI
	CY8C29466-24PVXIT
	CY8C29466-24SXI
	CY8C29466-24SXIT
	CY8C29566-24AXI
	CY8C29566-24AXIT
	CY8C29666-24PVXI
	CY8C29666-24PVXIT
	CY8C29666-24LFXI
	CY8C29866-24AXI
	CY8C29000-24AXI

Qualification Status

Product Status: In Production

Errata Summary

The following table defines the errata applicability to available CY8C29xxx family devices.

Items	Part Number	Silicon Revision	Fix Status
[1]. Invalid Flash reads may occur if VDD is pulled to -0.5 V just before power-on	CY8C29xxx		No silicon fix is planned. Workaround is required.
[2]. Internal main oscillator (IMO) tolerance deviation at temperature extremes	CY8C29xxx		No silicon fix planned. Workaround is required.

1. Invalid Flash reads may occur if VDD is pulled to -0.5 V just before power-on

Problem Definition

When V_{DD} of the device is pulled below ground just before power-on; the first read from each 8 K Flash bank may be corrupted. This issue does not affect Flash bank 0 because it is the selected bank upon reset.

Parameters Affected

When VDD is pulled below ground prior to power-on, an internal Flash reference may deviate from its nominal voltage. The reference deviation tends to result in the first Flash read from that bank returning 0xFF. During the first read from each bank, the reference is reset resulting in all future reads returning the correct value. A short delay of 5 μ s before the first real read provides time for the reference voltage to stabilize. When V_{DD} of the device is pulled below ground just before power-on; the first read from each 8K Flash bank may be corrupted apart from Flash bank 0. This can be solved by doing a dummy read from each Flash bank prior to use of the Flash banks.

Workaround

To prevent an invalid Flash read, a dummy read from each Flash bank must occur prior to use of the Flash banks. A delay of 5 µs must occur after the dummy read and before a real read. The dummy reads should occur as soon as possible and must be located in Flash bank 0 prior to a read from any other Flash bank. An example for reading a byte of memory from each Flash bank is listed below and should be placed in boot.tpl and boot.asm immediately after the 'start:' label.

Document History Page

Document	Number: 38			
Revision	ECN	Origin of Change	Submission Date	Description of Change
**	131151	New Silicon	11/13/2003	New document (Revision **).
*A	132848	NWJ	01/21/2004	New information. First edition of preliminary datasheet.
*B	133205	NWJ	01/27/2004	Changed part numbers, increased SRAM data storage to 2 K bytes.
*C	133656	SFV	02/09/2004	Changed part numbers and removed a 28-pin SOIC.
*D	227240	SFV	06/01/2004	Changes to Overview section, 48-pin MLF pinout, and significant changes to the Electrical Specs.
*E	240108	SFV	See ECN	Added a 28-lead (300 mil) SOIC part.
*F	247492	SFV	See ECN	New information added to the Electrical Specifications chapter.
*G	288849	HMT	See ECN	Add DS standards, update device table, fine-tune pinouts, add Reflow Peak Temp. table. Finalize.
*H	722736	HMT	See ECN	Add QFN package clarifications. Add new QFN diagram. Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add CY8C20x34 to PSoC Device Characteristics table. Update emulation pod/feet kit part numbers. Add OCD non-production pinouts and package diagrams. Add ISSP note to pinout tables. Update package diagram revisions. Update typical and recommended Storage Temperature per industrial specs. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks.
*	2503350	DFK / PYRS	See ECN	Pinout for CY8C29000 OCD wrongly included details of CY8C24X94. The correct pinout for CY8C29000 is included in this version. Added note on digital signaling in "DC Analog Reference Specifications" section.
*J	2545030	YARA	07/29/08	Added note to Ordering Information
*K	2708295	JVY	04/22/2009	Changed title from "CY8C29466, CY8C29566, CY8C29666, and CY8C29866 PSoC Mixed Signal Array Final datasheet" to "CY8C29466, CY8C29566, CY8C29666, and CY8C29866 PSoC [®] Programmable System-on-Chip [™] " Updated to datasheet template Added 48-Pin QFN (Sawn) package diagram and CY8C29666-24LTXI and CY8C29666-24LTXIT part details in the Ordering Information table Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified F _{IMO6} (page 27), T _{WRITE} specifications (page 34) Added I _{OH} (page 21), I _{OL} (page 21), DC _{ILO} (page 28), F _{32K_U} (page 27), T _{POWERUP} (page 28), T _{ERASEALL} (page 34), T _{PROGRAM_HOT} (page 34), and T _{PROGRAM_COLD} (page 34) specifications
*L	2761941	DRSW / AESA	09/10/2009	Added SR _{POWER_UP} parameter in AC specs table.
*M	2842762	DRSW	01/08/2010	Corrected Notes for V _{DD} parameter in Table 13, "DC Chip-Level Specifications," on page 22. Added "Contents" on page 3. Updated links in Sales, Solutions, and Legal Information.

Document History Page (continued)

Revision	ECN	Origin of Change	Submission Date	Description of Change
*Ү	4461247	ASRI	07/30/2014	Replaced references of "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" with "Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845" ir all instances across the document.
				Added More Information.
				Added PSoC Designer.
				Removed "Getting Started".
				Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated DC I2C Specifications: Updated Table 28: Replaced V _{OHI2C} with V _{OLI2C} .
*Z	4479512	ASRI / RJVB	09/03/2014	Updated Electrical Specifications: Updated DC Electrical Characteristics: Added DC Analog External Reference Specifications. Updated AC Electrical Characteristics: Updated AC Operational Amplifier Specifications: Updated description. Updated Figure 18.
				Updated Errata: Updated Errata Summary: Updated details in "Fix Status" column in the table. Updated details in "Fix Status" bulleted point below the table.
AA	4622517	DIMA	01/13/2015	Updated Pinouts: Updated 100-Pin Part Pinout: Updated Table 6: Added Note 10 and referred the same note in description of pin 15, pin 34, pin 65 pin 84 and pin 85. Updated 100-Pin Part Pinout (On-Chip Debug): Updated Table 7: Added Note 12 and referred the same note in description of pin 15, pin 34, pin 65 pin 84 and pin 85.
				Updated Packaging Information: spec 51-85079 – Changed revision from *E to *F.
AB	4882080	ASRI	08/12/2015	Replaced "Flash pages" with "Flash banks" in all instances across the document Updated Packaging Information: spec 001-13191 – Changed revision from *G to *H.
AC	5702069	ASRI	04/19/2017	Updated Cypress logo. Updated Copyright. Updated the following Packaging Information: Figure 23 (spec 51-85064 *F to *G) Figure 26 (spec 51-85048 *I to *J)