

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•**X**F

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	15
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj12mc201-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ12MC201/202 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")

- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVDD	and	AVss	pins	mus	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	source.				

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD, and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

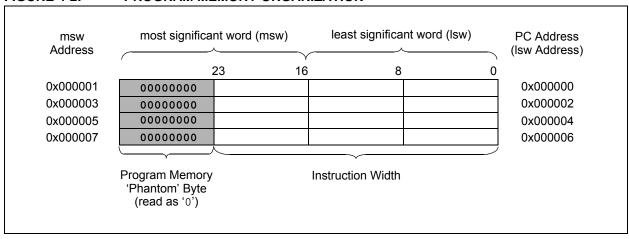
REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

NOTES:

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ12MC201/202 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ12MC201/202 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

Т

TABLE 4-5: TIMER REGISTER MAP	
-------------------------------	--

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	Timer1 Register											0000					
PR1	0102	Period Register 1										FFFF						
T1CON	0104	TON	TON - TSIDL TGATE TCKPS<1:0> - TSYNC TCS -							0000								
TMR2	0106	Timer2 Register										0000						
TMR3HLD	0108	Timer3 Holding Register (for 32-bit timer operations only)										xxxx						
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	-	-	-		—	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON	_	TSIDL	-	_	_	_		—	TGATE	TCKP	S<1:0>	—	_	TCS	-	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-6: INPUT CAPTURE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140	Input 1 Capture Register												xxxx				
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	IR ICI<1:0> ICOV ICBNE ICM<2:0>					0000		
IC2BUF	0144	Input 2 Capture Register										xxxx						
IC2CON	0146		—	ICSIDL			-			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	ter							xxxx
IC7CON	015A		—	ICSIDL			-			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C	Input 8Capture Register										xxxx						
IC8CON	015E	_	—	ICSIDL			-	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
Legend:			n Reset		amontod r	and as '0'	Posot valu	los aro sho	wn in hovar	locimal								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

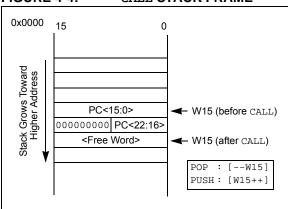
TABLE 4-7: **OUTPUT COMPARE REGISTER MAP**

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS 0180 Output Compare 1 Secondary Register												xxxx						
OC1R	0182	Output Compare 1 Register									xxxx							
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Out	put Compar	e 2 Second	ary Register							xxxx
OC2R	0188	Output Compare 2 Register									xxxx							
OC2CON	018A	_	_	OCSIDL	_		—	_		—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ12MC201/202 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. However, the stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x0C00 in RAM, initialize the SPLIM with the value 0x0BFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.2.7 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-26 form the basis of the addressing modes that are optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those provided in other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note:	Not all instructions support all the
	addressing modes given above.
	Individual instructions can support
	different subsets of these addressing modes.

TABLE 7-1:	INTERRUPT VECTORS (CONTINUED)
------------	-------------------------------

Vector Number Number		IVT Address	AIVT Address	Interrupt Source		
54	46	0x000070	0x000170	Reserved		
55	47	0x000072	0x000172	Reserved		
56	48	0x000074	0x000174	Reserved		
57	49	0x000076	0x000176	Reserved		
58	50	0x000078	0x000178	Reserved		
59	51	0x00007A	0x00017A	Reserved		
60	52	0x00007C	0x00017C	Reserved		
61	53	0x00007E	0x00017E	Reserved		
62	54	0x000080	0x000180	Reserved		
63	55	0x000082	0x000182	Reserved		
64	56	0x000084	0x000184	Reserved		
65	57	0x000086	0x000186	PWM1 – PWM1 Period Match		
66	58	0x000088	0x000188	QEI – Position Counter Compare		
67	59	0x00008A	0x00018A	Reserved		
68	60	0x00008C	0x00018C	Reserved		
69	61	0x00008E	0x00018E	Reserved		
70	62	0x000090	0x000190	Reserved		
71	63	0x000092	0x000192	FLTA1 – PWM1 Fault A		
72	64	0x000094	0x000194	Reserved		
73	65	0x000096	0x000196	U1E – UART1 Error		
74	66	0x000098	0x000198	Reserved		
75	67	0x00009A	0x00019A	Reserved		
76	68	0x00009C	0x00019C	Reserved		
77	69	0x00009E	0x00019E	Reserved		
78	70	0x0000A0	0x0001A0	Reserved		
79	71	0x0000A2	0x0001A2	Reserved		
80	72	0x0000A4	0x0001A4	Reserved		
81	73	0x0000A6	0x0001A6	PWM2 – PWM2 Period Match		
82	74	0x0000A8	0x0001A8	FLTA2 – PWM2 Fault A		
83-125	75-117	0x0000AA- 0x0000FE	0x0001AA- 0x0001FE	Reserved		

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	Reserved
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
IC8MD	IC7MD	—	—	_	_	IC2MD	IC1MD
bit 15	1						bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	<u> </u>	_		—	OC2MD	OC1MD
bit 7							bit
Legend:							
R = Readabl		W = Writable I	bit	U = Unimplen		id as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		_					
bit 15	•	Capture 8 Moc		t			
		ture 8 module i ture 8 module i					
bit 14	• •	Capture 2 Moc		ŀ			
		ture 7 module i		L .			
		ture 7 module i					
bit 13-10	Unimplemen	ted: Read as 'd)'				
bit 9	IC2MD: Input	Capture 2 Mod	ule Disable bi	t			
		ture 2 module i					
	• •	ture 2 module i					
bit 8	-	Capture 1 Moc		t			
		ture 1 module i ture 1 module i					
bit 7-2	• •	ted: Read as '0					
bit 1	-	out Compare 2		le bit			
	•	ompare 2 modu					
		mpare 2 modu					
bit 0	OC1MD: Outp	out Compare 1	Module Disabl	le bit			
	1 = Output Co	ompare 1 modu	le is disabled				
		ompare 1 modu					

REGISTER 10-20: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP13R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—			RP12R<4:0>		
bit 7		•	•				bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

- bit 12-8 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-21: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-2 for peripheral function numbers)

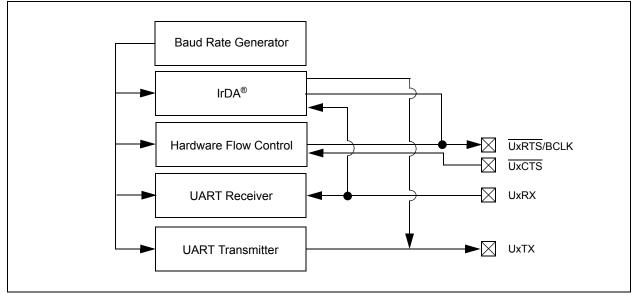
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PTEN		PTSIDL		—		—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
L:1 7	PTOPS	5<3:0>		PICK	PS<1:0>	PTMOD	-
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	PTEN: PWM	Time Base Tim	er Enable bit				
	1 = PWM tim						
	0 = PWM tim						
bit 14	-	ted: Read as '0					
bit 13	PTSIDL: PWM Time Base Stop in Idle Mode bit						
		e base halts in (e base runs in (
bit 12-8		ted: Read as '0					
bit 7-4	•	·: PWM Time Ba		ostscale Select	bits		
	1111 = 1:16		•				
	•						
	•						
	•						
	0001 = 1:2 p 0000 = 1:1 p						
bit 3-2	PTCKPS<1:0	D>: PWM Time I	Base Input C	lock Prescale S	elect bits		
	11 = PWM tir	me base input c	ock period is	64 TCY (1:64 p	orescale)		
		me base input c					
		me base input c me base input c	•	• •	,		
bit 1-0		>: PWM Time B	•	• •	ale)		
bit 1-0		me base operate			n Count mode v	vith interrupts for	double
	10 = PWM tir	ne base operate			n Count mode		
		ne base operate	•				
	00 = PWM tir	ne base operate	es in a Free-l	Running mode			

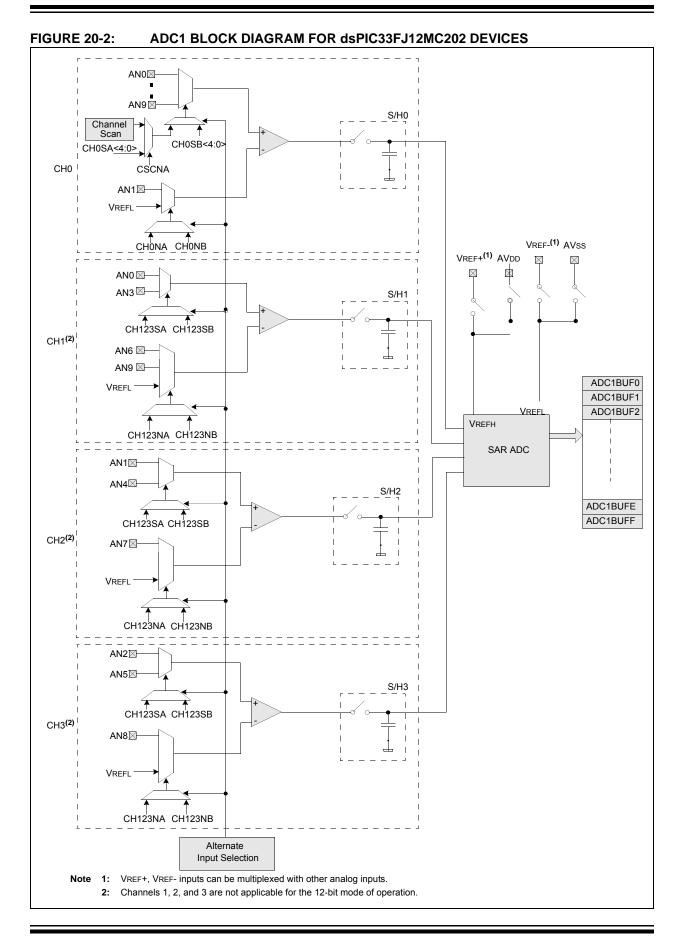
REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available on the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ12MC201/202 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, and RS-232, and RS-485 interfaces. The module <u>also supports a hardware flow</u> control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:


- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd, or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 19-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 20-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7						·	bit 0
Legend:							
R = Readable I	oit	W = Writable b	bit	U = Unimplei	mented bit, rea	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **CSS<5:0>:** ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

2: CSSx = ANx, where x = 0 through 5.

REGISTER 20-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **PCFG<5:0>:** ADC Port Configuration Control bits

'1' = Bit is set

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

'0' = Bit is cleared

Note 1: On devices without 6 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

- **2:** PCFGx = ANx, where x = 0 through 5.
- **3:** PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx register. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

-n = Value at POR

x = Bit is unknown

Note 1: On devices without 6 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREFL.

23.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ12MC201/202 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ12MC201/202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 24-31: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	;(1)	Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated	3 TCY		ns	—	

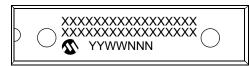
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

 Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

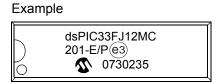
25.0 PACKAGING INFORMATION

25.1 Package Marking Information

20-Lead PDIP

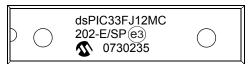

20-Lead SSOP

20-Lead SOIC



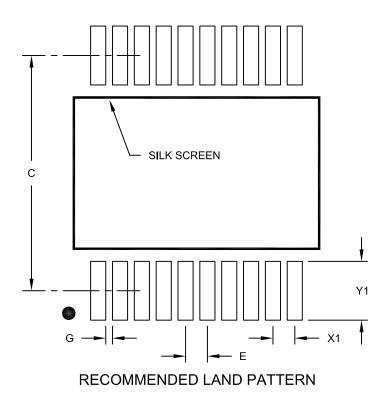
28-Lead SPDIP

28-Lead SOIC


Example


Example

Example


Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
Note:					

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

TABLE 25-1: MAJOR SECTION UPDATES

Section Name	Update Description		
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated ADC Conversion Clock Select bits in the AD1CON3 register from ADCS<5:0> to ADCS<7:0>. Any references to these bits have also been updated throughout this data sheet (Register 19-3).		
	Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201) and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).		
	Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2: ADC Transfer Function (10-Bit Example).		
	Added Note 2 to Figure 19-2: ADC Conversion Clock Period Block Diagram.		
	Updated ADC1 Input Channel 1, 2, 3 Select Register (see Register 19-4) as follows:		
	 Changed bit 10-9 (CH123NB - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0). 		
	 Updated bit 8 (CH123SB) to reflect device-specific information. Updated bit 0 (CH123SA) to reflect device-specific information. Changed bit 2-1 (CH123NA - dsPIC33FJ12MC201 devices only) description for bit value of 10 (if AD12B = 0). 		
	 Updated ADC1 Input Channel 0 Select Register (see Register 19-5) as follows: Changed bit value descriptions for bits 12-8 Changed bit value descriptions for bits 4-0 (dsPIC33FJ12MC201 devices) 		
	Modified Notes 1 and 2 in the ADC1 Input Scan Select Register Low (see Register 19-6)		
	Modified Notes 1 and 2 in the ADC1 Port Configuration Register Low (see Register 19-7)		
Section 20.0 "Special Features"	Added FICD register information for address 0xF8000E in the Device Configuration Register Map (see Table 20-1).		
	Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the dsPIC33FJ12MC201/202 Configuration Bits Description (see Table 20-2).		
	Added a note regarding the placement of low-ESR capacitors, after the second paragraph of Section 20.2 " On-Chip Voltage Regulator " and to Figure 20-2.		
	Removed the words "if enabled" from the second sentence in the fifth paragraph of Section 20.3 "BOR: Brown-out Reset"		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		d	sPIC 33 FJ 12 MC2 02 T	Examples:
Tape and Reel Fla Temperature Ran	amily – / Size (ag (if a age	KB) ppli		 a) dsPIC33FJ12MC202-E/SP: Motor Control dsPIC33, 12 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	MC2	=	Motor Control family	
Pin Count:	01 02	= =	20-pin 28-pin	
Temperature Range:	I E	= =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended)	
Package:	P SP SO ML SS	= = = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide, 7.50 mil body (SOIC)	